0
点赞
收藏
分享

微信扫一扫

[RK3566-Android11] 关于2K (2560x1440)分辨率支持问题

爱写作的小土豆 04-07 16:00 阅读 1

前言

Web脚本语言JavaScript入门容易,但是想要熟练掌握却需要几年的学习与实践,还要在弱类型开发语言中习惯于使用模块来构建你的代码,就像小时候玩的乐高积木一样。

ed9a0578fc6644febe8166a6b832fcc6.png

应用程序的模块化理念,通过将实现隐藏在一个简单的接口后面,您可以使您的应用程序万无一失且易于使用。它只做它应该做的,没有别的

fff3592c52f648e58cab4a296b7d9cda.png

通过隐藏实现,我们对使用我们代码的人实施了良好的编码风格。您可以访问的实现越多,它就越有可能成为您以后必须处理的复杂的半生不熟的“修复”。

1df7f62e52f0443cac187724d293d517.png

创建3D场景时,唯一的限制是您的想象力 - 以及您的技术知识深度。

10089180ddae47bfbf1865f661568ff3.png

描述3D空间的坐标系和用于在坐标系内移动对象是难点加重点。场景图用于描述构成我们场景的对象层次结构的结构,向量用于描述3D空间中的位置(以及许多其他事物) ,还有不少于两种描述旋转的方式:欧拉角Euler angles和四元数quaternions

对 three.js 和乐高模型web化相关知识点进行实战。希望能与大家交流技术心得和经验,一起共同进步。涉及的知识点如下:

为了方便demo演示,采用传统的 HTML 单文件importmap、module方式来编写代码。

实践

容器

首先,准备一个空白容器,让它的尺寸与浏览器视窗大小相同,以充分利用屏幕空间。

<div id="scene-container"></div>

依赖

对于 JS 脚本,使用 导入映射 配置资源的 CDN 地址,这样就可以像使用 npm 包一样导入相关资源。

<script type="importmap">
    {
      "imports": {
        "three": "https://cdn.jsdelivr.net/npm/three@0.162.0/+esm",
        "three/addons/": "https://cdn.jsdelivr.net/npm/three@0.162.0/examples/jsm/",
		"lil-gui": "https://threejsfundamentals.org/3rdparty/dat.gui.module.js",
        "@tweenjs/tween.js": "https://cdn.jsdelivr.net/npm/@tweenjs/tween.js@23.1.1/dist/tween.esm.js",
        "canvas-confetti": "https://cdn.jsdelivr.net/npm/canvas-confetti@1.9.2/+esm"
      }
    }
  </script>

接着就可以引入依赖。

<script type="module">
		import * as THREE from 'three';
		import * as TWEEN from '@tweenjs/tween.js';
        import confetti from 'canvas-confetti';
		import { GUI } from 'lil-gui';
</script>

设计变量、类、方法

定义相关变量

let container, progressBarDiv;
let camera, scene, renderer, controls, gui, guiData, anLoop;
let model;
const modelFileList = {'Car': './car.txt'}

设计乐高类

class Ldraw {
			constructor(){
				// 首次使用构造器实例
				if (!(Ldraw.instance instanceof Ldraw)) {
					this.init();
				}
				return Ldraw.instance
			}

			init() {

				//container = document.createElement( 'div' );
				//document.body.appendChild( container );

				camera = new THREE.PerspectiveCamera( 45, container.clientWidth / container.clientHeight, 1, 10000 );
				camera.position.set( 150, 200, 250 );
			
				// renderer
			
				renderer = new THREE.WebGLRenderer( { antialias: true } );
				//renderer.setSize( window.innerWidth, window.innerHeight );
				renderer.setSize(container.clientWidth, container.clientHeight);
				// eslint-disable-next-line no-undef
				renderer.setPixelRatio(window.devicePixelRatio);
				renderer.toneMapping = THREE.ACESFilmicToneMapping;
				// canvas画布绝对定位
				//renderer.domElement.style.display = 'black';
				//renderer.domElement.style.position = 'absolute';
				//renderer.domElement.style.top = '0px';
				//renderer.domElement.style.left = '0px';
				//renderer.domElement.style.zIndex = -1;

				container.appendChild( renderer.domElement );
			
				// scene
			
				const pmremGenerator = new THREE.PMREMGenerator( renderer );
			
				scene = new THREE.Scene();
				scene.background = new THREE.Color( 0xdeebed );
				scene.environment = pmremGenerator.fromScene( new RoomEnvironment( renderer ) ).texture;
			
				controls = new OrbitControls( camera, renderer.domElement );
				controls.enableDamping = true;

				anLoop = new Loop(camera, scene, renderer);
			
				// gui
			
				guiData = {
					//modelFileName: modelFileList[ 'Car' ],
					displayLines: true,
					conditionalLines: true,
					smoothNormals: true,
					buildingStep: 0,
					noBuildingSteps: 'No steps.',
					flatColors: false,
					mergeModel: false
				};
			
				window.addEventListener( 'resize', this.onWindowResize );
			
				progressBarDiv = document.createElement( 'div' );
				progressBarDiv.innerText = 'Loading...';
				progressBarDiv.style.fontSize = '3em';
				progressBarDiv.style.color = '#888';
				progressBarDiv.style.display = 'block';
				progressBarDiv.style.position = 'absolute';
				progressBarDiv.style.top = '50%';
				progressBarDiv.style.width = '100%';
				progressBarDiv.style.textAlign = 'center';
			
			
				// load materials and then the model
			
				this.reloadObject( true );
			
			}
			
			updateObjectsVisibility() {
			
				model.traverse( c => {
			
					if ( c.isLineSegments ) {
			
						if ( c.isConditionalLine ) {
			
							c.visible = guiData.conditionalLines;
			
						} else {
			
							c.visible = guiData.displayLines;
			
						}
			
					} else if ( c.isGroup ) {
			
						// Hide objects with building step > gui setting
						c.visible = c.userData.buildingStep <= guiData.buildingStep;
			
					}
			
				} );
			
			}
			
			reloadObject( resetCamera ) {
			
				if ( model ) {
			
					scene.remove( model );
			
				}
			
				model = null;
			
				this.updateProgressBar( 0 );
				this.showProgressBar;
			
				// only smooth when not rendering with flat colors to improve processing time
				const lDrawLoader = new LDrawLoader();
				lDrawLoader.smoothNormals = guiData.smoothNormals && ! guiData.flatColors;


				lDrawLoader.load( './car.txt',  ( group2 )=> {
					//.setPath( ldrawPath )
					//.load( guiData.modelFileName,  ( group2 )=> {
			
						if ( model ) {
			
							scene.remove( model );
			
						}
			
						model = group2;
			
						// demonstrate how to use convert to flat colors to better mimic the lego instructions look
						if ( guiData.flatColors ) {
			
							const convertMaterial = ( material )=> {
			
								const newMaterial = new THREE.MeshBasicMaterial();
								newMaterial.color.copy( material.color );
								newMaterial.polygonOffset = material.polygonOffset;
								newMaterial.polygonOffsetUnits = material.polygonOffsetUnits;
								newMaterial.polygonOffsetFactor = material.polygonOffsetFactor;
								newMaterial.opacity = material.opacity;
								newMaterial.transparent = material.transparent;
								newMaterial.depthWrite = material.depthWrite;
								newMaterial.toneMapping = false;
			
								return newMaterial;
			
							}
			
							model.traverse( c => {
			
								if ( c.isMesh ) {
			
									if ( Array.isArray( c.material ) ) {
			
										c.material = c.material.map( convertMaterial );
			
									} else {
			
										c.material = convertMaterial( c.material );
			
									}
			
								}
			
							} );
			
						}
			
						// Merge model geometries by material
						if ( guiData.mergeModel ) model = LDrawUtils.mergeObject( model );
			
						// Convert from LDraw coordinates: rotate 180 degrees around OX
						model.rotation.x = Math.PI;
			
						scene.add( model );
			
						guiData.buildingStep = model.userData.numBuildingSteps - 1;
			
						this.updateObjectsVisibility;
			
						// Adjust camera and light
			
						const bbox = new THREE.Box3().setFromObject( model );
						const size = bbox.getSize( new THREE.Vector3() );
						const radius = Math.max( size.x, Math.max( size.y, size.z ) ) * 0.5;
			
						if ( resetCamera ) {
			
							controls.target0.copy( bbox.getCenter( new THREE.Vector3() ) );
							controls.position0.set( - 2.3, 1, 2 ).multiplyScalar( radius ).add( controls.target0 );
							controls.reset();
			
						}
			
						this.createGUI;
			
						this.hideProgressBar;
			
					}, this.onProgress, this.onError );
				//});
			
			}
			
			onWindowResize() {
			
				camera.aspect = window.innerWidth / window.innerHeight;
				camera.updateProjectionMatrix();
			
				renderer.setSize( window.innerWidth, window.innerHeight );
			
			}
			
			createGUI() {
			
				if ( gui ) {
			
					gui.destroy();
			
				}
			
				gui = new GUI();
			
				gui.add( guiData, 'modelFileName', modelFileList ).name( 'Model' ).onFinishChange( ()=> {
			
					this.reloadObject( true );
			
				} );
			
				gui.add( guiData, 'flatColors' ).name( 'Flat Colors' ).onChange( ()=> {
			
					this.reloadObject( false );
			
				} );
			
				gui.add( guiData, 'mergeModel' ).name( 'Merge model' ).onChange( ()=> {
			
					this.reloadObject( false );
			
				} );
			
				if ( model.userData.numBuildingSteps > 1 ) {
			
					gui.add( guiData, 'buildingStep', 0, model.userData.numBuildingSteps - 1 ).step( 1 ).name( 'Building step' ).onChange( this.updateObjectsVisibility );
			
				} else {
			
					gui.add( guiData, 'noBuildingSteps' ).name( 'Building step' ).onChange( this.updateObjectsVisibility );
			
				}

				const changeNormals = ()=> {
			
					this.reloadObject( false );
			
				} 
			
				gui.add( guiData, 'smoothNormals' ).name( 'Smooth Normals' ).onChange( changeNormals );
			
				gui.add( guiData, 'displayLines' ).name( 'Display Lines' ).onChange( this.updateObjectsVisibility );
				gui.add( guiData, 'conditionalLines' ).name( 'Conditional Lines' ).onChange( this.updateObjectsVisibility );
			
			}

			animate() {
			
				requestAnimationFrame( this.animate );
				controls.update();
				this.render;
			
			}
			
			render() {
			
				renderer.render( scene, camera );
			
			}

			updateProgressBar( fraction ) {
			
				progressBarDiv.innerText = 'Loading... ' + Math.round( fraction * 100, 2 ) + '%';
			
			}
			
			onProgress( xhr ) {
			
				if ( xhr.lengthComputable ) {
			
					this.updateProgressBar( xhr.loaded / xhr.total );
			
					console.log( Math.round( xhr.loaded / xhr.total * 100, 2 ) + '% downloaded' );
			
				}
			
			}
			
			onError( error ) {
			
				const message = 'Error loading model';
				progressBarDiv.innerText = message;
				console.log( message );
				console.error( error );
			
			}
			
			showProgressBar() {
			
				document.body.appendChild( progressBarDiv );
			
			}
			
			hideProgressBar() {
			
				document.body.removeChild( progressBarDiv );
			
			}

			start() {
				anLoop.start();
			}
			stop() {
				anLoop.stop();
			}
			tick() {
				// Code to update animations will go here
				anLoop.tick();
			}
			
		}

		//export { Ldraw }

创建一个场景(Scene)、一个透视相机(PerspectiveCamera)和一个 WebGL 渲染器(WebGLRenderer),并将渲染器添加到 DOM 中。同时,编写一个渲染函数,使用requestAnimationFrame 方法循环渲染场景。

import {
		EventDispatcher,
		MOUSE,
		Quaternion,
		Spherical,
		TOUCH,
		Plane,
		Ray,
		MathUtils,
		BackSide,
		BoxGeometry,
		Mesh,
		Scene,
		MeshBasicMaterial,
		MeshStandardMaterial,
		PointLight,
		BufferAttribute,
		BufferGeometry,
		FileLoader,
		Group,
		LineBasicMaterial,
		LineSegments,
		Loader,
		ShaderMaterial,
		SRGBColorSpace,
		UniformsLib,
		UniformsUtils,
		Clock,
		Color,
		Matrix3,
		Matrix4,
		PerspectiveCamera,
		Vector2,
		Vector3,
		Vector4,
		WebGLRenderTarget,
		HalfFloatType,
		Float32BufferAttribute,
		InstancedBufferAttribute,
		InterleavedBuffer,
		InterleavedBufferAttribute,
		TriangleFanDrawMode,
		TriangleStripDrawMode,
		TrianglesDrawMode,
	} from 'three';


	// OrbitControls performs orbiting, dollying (zooming), and panning.
	// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
	//
	//    Orbit - left mouse / touch: one-finger move
	//    Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
	//    Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move

	const _changeEvent = { type: 'change' };
	const _startEvent = { type: 'start' };
	const _endEvent = { type: 'end' };
	const _ray = new Ray();
	const _plane = new Plane();
	const TILT_LIMIT = Math.cos( 70 * MathUtils.DEG2RAD );

	class OrbitControls extends EventDispatcher {

		constructor( object, domElement ) {

			super();

			this.object = object;
			this.domElement = domElement;
			this.domElement.style.touchAction = 'none'; // disable touch scroll

			// Set to false to disable this control
			this.enabled = true;

			// "target" sets the location of focus, where the object orbits around
			this.target = new Vector3();

			// Sets the 3D cursor (similar to Blender), from which the maxTargetRadius takes effect
			this.cursor = new Vector3();

			// How far you can dolly in and out ( PerspectiveCamera only )
			this.minDistance = 0;
			this.maxDistance = Infinity;

			// How far you can zoom in and out ( OrthographicCamera only )
			this.minZoom = 0;
			this.maxZoom = Infinity;

			// Limit camera target within a spherical area around the cursor
			this.minTargetRadius = 0;
			this.maxTargetRadius = Infinity;

			// How far you can orbit vertically, upper and lower limits.
			// Range is 0 to Math.PI radians.
			this.minPolarAngle = 0; // radians
			this.maxPolarAngle = Math.PI; // radians

			// How far you can orbit horizontally, upper and lower limits.
			// If set, the interval [ min, max ] must be a sub-interval of [ - 2 PI, 2 PI ], with ( max - min < 2 PI )
			this.minAzimuthAngle = - Infinity; // radians
			this.maxAzimuthAngle = Infinity; // radians

			// Set to true to enable damping (inertia)
			// If damping is enabled, you must call controls.update() in your animation loop
			this.enableDamping = false;
			this.dampingFactor = 0.05;

			// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
			// Set to false to disable zooming
			this.enableZoom = true;
			this.zoomSpeed = 1.0;

			// Set to false to disable rotating
			this.enableRotate = true;
			this.rotateSpeed = 1.0;

			// Set to false to disable panning
			this.enablePan = true;
			this.panSpeed = 1.0;
			this.screenSpacePanning = true; // if false, pan orthogonal to world-space direction camera.up
			this.keyPanSpeed = 7.0;	// pixels moved per arrow key push
			this.zoomToCursor = false;

			// Set to true to automatically rotate around the target
			// If auto-rotate is enabled, you must call controls.update() in your animation loop
			this.autoRotate = false;
			this.autoRotateSpeed = 2.0; // 30 seconds per orbit when fps is 60

			// The four arrow keys
			this.keys = { LEFT: 'ArrowLeft', UP: 'ArrowUp', RIGHT: 'ArrowRight', BOTTOM: 'ArrowDown' };

			// Mouse buttons
			this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN };

			// Touch fingers
			this.touches = { ONE: TOUCH.ROTATE, TWO: TOUCH.DOLLY_PAN };

			// for reset
			this.target0 = this.target.clone();
			this.position0 = this.object.position.clone();
			this.zoom0 = this.object.zoom;

			// the target DOM element for key events
			this._domElementKeyEvents = null;

			//
			// public methods
			//

			this.getPolarAngle = function () {

				return spherical.phi;

			};

			this.getAzimuthalAngle = function () {

				return spherical.theta;

			};

			this.getDistance = function () {

				return this.object.position.distanceTo( this.target );

			};

			this.listenToKeyEvents = function ( domElement ) {

				domElement.addEventListener( 'keydown', onKeyDown );
				this._domElementKeyEvents = domElement;

			};

			this.stopListenToKeyEvents = function () {

				this._domElementKeyEvents.removeEventListener( 'keydown', onKeyDown );
				this._domElementKeyEvents = null;

			};

			this.saveState = function () {

				scope.target0.copy( scope.target );
				scope.position0.copy( scope.object.position );
				scope.zoom0 = scope.object.zoom;

			};

			this.reset = function () {

				scope.target.copy( scope.target0 );
				scope.object.position.copy( scope.position0 );
				scope.object.zoom = scope.zoom0;

				scope.object.updateProjectionMatrix();
				scope.dispatchEvent( _changeEvent );

				scope.update();

				state = STATE.NONE;

			};

			// this method is exposed, but perhaps it would be better if we can make it private...
			this.update = function () {

				const offset = new Vector3();

				// so camera.up is the orbit axis
				const quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) );
				const quatInverse = quat.clone().invert();

				const lastPosition = new Vector3();
				const lastQuaternion = new Quaternion();
				const lastTargetPosition = new Vector3();

				const twoPI = 2 * Math.PI;

				return function update( deltaTime = null ) {

					const position = scope.object.position;

					offset.copy( position ).sub( scope.target );

					// rotate offset to "y-axis-is-up" space
					offset.applyQuaternion( quat );

					// angle from z-axis around y-axis
					spherical.setFromVector3( offset );

					if ( scope.autoRotate && state === STATE.NONE ) {

						rotateLeft( getAutoRotationAngle( deltaTime ) );

					}

					if ( scope.enableDamping ) {

						spherical.theta += sphericalDelta.theta * scope.dampingFactor;
						spherical.phi += sphericalDelta.phi * scope.dampingFactor;

					} else {

						spherical.theta += sphericalDelta.theta;
						spherical.phi += sphericalDelta.phi;

					}

					// restrict theta to be between desired limits

					let min = scope.minAzimuthAngle;
					let max = scope.maxAzimuthAngle;

					if ( isFinite( min ) && isFinite( max ) ) {

						if ( min < - Math.PI ) min += twoPI; else if ( min > Math.PI ) min -= twoPI;

						if ( max < - Math.PI ) max += twoPI; else if ( max > Math.PI ) max -= twoPI;

						if ( min <= max ) {

							spherical.theta = Math.max( min, Math.min( max, spherical.theta ) );

						} else {

							spherical.theta = ( spherical.theta > ( min + max ) / 2 ) ?
								Math.max( min, spherical.theta ) :
								Math.min( max, spherical.theta );

						}

					}

					// restrict phi to be between desired limits
					spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );

					spherical.makeSafe();


					// move target to panned location

					if ( scope.enableDamping === true ) {

						scope.target.addScaledVector( panOffset, scope.dampingFactor );

					} else {

						scope.target.add( panOffset );

					}

					// Limit the target distance from the cursor to create a sphere around the center of interest
					scope.target.sub( scope.cursor );
					scope.target.clampLength( scope.minTargetRadius, scope.maxTargetRadius );
					scope.target.add( scope.cursor );

					let zoomChanged = false;
					// adjust the camera position based on zoom only if we're not zooming to the cursor or if it's an ortho camera
					// we adjust zoom later in these cases
					if ( scope.zoomToCursor && performCursorZoom || scope.object.isOrthographicCamera ) {

						spherical.radius = clampDistance( spherical.radius );

					} else {

						const prevRadius = spherical.radius;
						spherical.radius = clampDistance( spherical.radius * scale );
						zoomChanged = prevRadius != spherical.radius;

					}

					offset.setFromSpherical( spherical );

					// rotate offset back to "camera-up-vector-is-up" space
					offset.applyQuaternion( quatInverse );

					position.copy( scope.target ).add( offset );

					scope.object.lookAt( scope.target );

					if ( scope.enableDamping === true ) {

						sphericalDelta.theta *= ( 1 - scope.dampingFactor );
						sphericalDelta.phi *= ( 1 - scope.dampingFactor );

						panOffset.multiplyScalar( 1 - scope.dampingFactor );

					} else {

						sphericalDelta.set( 0, 0, 0 );

						panOffset.set( 0, 0, 0 );

					}

					// adjust camera position
					if ( scope.zoomToCursor && performCursorZoom ) {

						let newRadius = null;
						if ( scope.object.isPerspectiveCamera ) {

							// move the camera down the pointer ray
							// this method avoids floating point error
							const prevRadius = offset.length();
							newRadius = clampDistance( prevRadius * scale );

							const radiusDelta = prevRadius - newRadius;
							scope.object.position.addScaledVector( dollyDirection, radiusDelta );
							scope.object.updateMatrixWorld();

							zoomChanged = !! radiusDelta;

						} else if ( scope.object.isOrthographicCamera ) {

							// adjust the ortho camera position based on zoom changes
							const mouseBefore = new Vector3( mouse.x, mouse.y, 0 );
							mouseBefore.unproject( scope.object );

							const prevZoom = scope.object.zoom;
							scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / scale ) );
							scope.object.updateProjectionMatrix();

							zoomChanged = prevZoom !== scope.object.zoom;

							const mouseAfter = new Vector3( mouse.x, mouse.y, 0 );
							mouseAfter.unproject( scope.object );

							scope.object.position.sub( mouseAfter ).add( mouseBefore );
							scope.object.updateMatrixWorld();

							newRadius = offset.length();

						} else {

							console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - zoom to cursor disabled.' );
							scope.zoomToCursor = false;

						}

						// handle the placement of the target
						if ( newRadius !== null ) {

							if ( this.screenSpacePanning ) {

								// position the orbit target in front of the new camera position
								scope.target.set( 0, 0, - 1 )
									.transformDirection( scope.object.matrix )
									.multiplyScalar( newRadius )
									.add( scope.object.position );

							} else {

								// get the ray and translation plane to compute target
								_ray.origin.copy( scope.object.position );
								_ray.direction.set( 0, 0, - 1 ).transformDirection( scope.object.matrix );

								// if the camera is 20 degrees above the horizon then don't adjust the focus target to avoid
								// extremely large values
								if ( Math.abs( scope.object.up.dot( _ray.direction ) ) < TILT_LIMIT ) {

									object.lookAt( scope.target );

								} else {

									_plane.setFromNormalAndCoplanarPoint( scope.object.up, scope.target );
									_ray.intersectPlane( _plane, scope.target );

								}

							}

						}

					} else if ( scope.object.isOrthographicCamera ) {

						const prevZoom = scope.object.zoom;
						scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / scale ) );

						if ( prevZoom !== scope.object.zoom ) {

							scope.object.updateProjectionMatrix();
							zoomChanged = true;

						}

					}

					scale = 1;
					performCursorZoom = false;

					// update condition is:
					// min(camera displacement, camera rotation in radians)^2 > EPS
					// using small-angle approximation cos(x/2) = 1 - x^2 / 8

					if ( zoomChanged ||
						lastPosition.distanceToSquared( scope.object.position ) > EPS ||
						8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ||
						lastTargetPosition.distanceToSquared( scope.target ) > EPS ) {

						scope.dispatchEvent( _changeEvent );

						lastPosition.copy( scope.object.position );
						lastQuaternion.copy( scope.object.quaternion );
						lastTargetPosition.copy( scope.target );

						return true;

					}

					return false;

				};

			}();

			this.dispose = function () {

				scope.domElement.removeEventListener( 'contextmenu', onContextMenu );

				scope.domElement.removeEventListener( 'pointerdown', onPointerDown );
				scope.domElement.removeEventListener( 'pointercancel', onPointerUp );
				scope.domElement.removeEventListener( 'wheel', onMouseWheel );

				scope.domElement.removeEventListener( 'pointermove', onPointerMove );
				scope.domElement.removeEventListener( 'pointerup', onPointerUp );

				const document = scope.domElement.getRootNode(); // offscreen canvas compatibility

				document.removeEventListener( 'keydown', interceptControlDown, { capture: true } );

				if ( scope._domElementKeyEvents !== null ) {

					scope._domElementKeyEvents.removeEventListener( 'keydown', onKeyDown );
					scope._domElementKeyEvents = null;

				}

				//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?

			};

			//
			// internals
			//

			const scope = this;

			const STATE = {
				NONE: - 1,
				ROTATE: 0,
				DOLLY: 1,
				PAN: 2,
				TOUCH_ROTATE: 3,
				TOUCH_PAN: 4,
				TOUCH_DOLLY_PAN: 5,
				TOUCH_DOLLY_ROTATE: 6
			};

			let state = STATE.NONE;

			const EPS = 0.000001;

			// current position in spherical coordinates
			const spherical = new Spherical();
			const sphericalDelta = new Spherical();

			let scale = 1;
			const panOffset = new Vector3();

			const rotateStart = new Vector2();
			const rotateEnd = new Vector2();
			const rotateDelta = new Vector2();

			const panStart = new Vector2();
			const panEnd = new Vector2();
			const panDelta = new Vector2();

			const dollyStart = new Vector2();
			const dollyEnd = new Vector2();
			const dollyDelta = new Vector2();

			const dollyDirection = new Vector3();
			const mouse = new Vector2();
			let performCursorZoom = false;

			const pointers = [];
			const pointerPositions = {};

			let controlActive = false;

			function getAutoRotationAngle( deltaTime ) {

				if ( deltaTime !== null ) {

					return ( 2 * Math.PI / 60 * scope.autoRotateSpeed ) * deltaTime;

				} else {

					return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;

				}

			}

			function getZoomScale( delta ) {

				const normalizedDelta = Math.abs( delta * 0.01 );
				return Math.pow( 0.95, scope.zoomSpeed * normalizedDelta );

			}

			function rotateLeft( angle ) {

				sphericalDelta.theta -= angle;

			}

			function rotateUp( angle ) {

				sphericalDelta.phi -= angle;

			}

			const panLeft = function () {

				const v = new Vector3();

				return function panLeft( distance, objectMatrix ) {

					v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
					v.multiplyScalar( - distance );

					panOffset.add( v );

				};

			}();

			const panUp = function () {

				const v = new Vector3();

				return function panUp( distance, objectMatrix ) {

					if ( scope.screenSpacePanning === true ) {

						v.setFromMatrixColumn( objectMatrix, 1 );

					} else {

						v.setFromMatrixColumn( objectMatrix, 0 );
						v.crossVectors( scope.object.up, v );

					}

					v.multiplyScalar( distance );

					panOffset.add( v );

				};

			}();

			// deltaX and deltaY are in pixels; right and down are positive
			const pan = function () {

				const offset = new Vector3();

				return function pan( deltaX, deltaY ) {

					const element = scope.domElement;

					if ( scope.object.isPerspectiveCamera ) {

						// perspective
						const position = scope.object.position;
						offset.copy( position ).sub( scope.target );
						let targetDistance = offset.length();

						// half of the fov is center to top of screen
						targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );

						// we use only clientHeight here so aspect ratio does not distort speed
						panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
						panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );

					} else if ( scope.object.isOrthographicCamera ) {

						// orthographic
						panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
						panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );

					} else {

						// camera neither orthographic nor perspective
						console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
						scope.enablePan = false;

					}

				};

			}();

			function dollyOut( dollyScale ) {

				if ( scope.object.isPerspectiveCamera || scope.object.isOrthographicCamera ) {

					scale /= dollyScale;

				} else {

					console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
					scope.enableZoom = false;

				}

			}

			function dollyIn( dollyScale ) {

				if ( scope.object.isPerspectiveCamera || scope.object.isOrthographicCamera ) {

					scale *= dollyScale;

				} else {

					console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
					scope.enableZoom = false;

				}

			}

			function updateZoomParameters( x, y ) {

				if ( ! scope.zoomToCursor ) {

					return;

				}

				performCursorZoom = true;

				const rect = scope.domElement.getBoundingClientRect();
				const dx = x - rect.left;
				const dy = y - rect.top;
				const w = rect.width;
				const h = rect.height;

				mouse.x = ( dx / w ) * 2 - 1;
				mouse.y = - ( dy / h ) * 2 + 1;

				dollyDirection.set( mouse.x, mouse.y, 1 ).unproject( scope.object ).sub( scope.object.position ).normalize();

			}

			function clampDistance( dist ) {

				return Math.max( scope.minDistance, Math.min( scope.maxDistance, dist ) );

			}

			//
			// event callbacks - update the object state
			//

			function handleMouseDownRotate( event ) {

				rotateStart.set( event.clientX, event.clientY );

			}

			function handleMouseDownDolly( event ) {

				updateZoomParameters( event.clientX, event.clientX );
				dollyStart.set( event.clientX, event.clientY );

			}

			function handleMouseDownPan( event ) {

				panStart.set( event.clientX, event.clientY );

			}

			function handleMouseMoveRotate( event ) {

				rotateEnd.set( event.clientX, event.clientY );

				rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );

				const element = scope.domElement;

				rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height

				rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );

				rotateStart.copy( rotateEnd );

				scope.update();

			}

			function handleMouseMoveDolly( event ) {

				dollyEnd.set( event.clientX, event.clientY );

				dollyDelta.subVectors( dollyEnd, dollyStart );

				if ( dollyDelta.y > 0 ) {

					dollyOut( getZoomScale( dollyDelta.y ) );

				} else if ( dollyDelta.y < 0 ) {

					dollyIn( getZoomScale( dollyDelta.y ) );

				}

				dollyStart.copy( dollyEnd );

				scope.update();

			}

			function handleMouseMovePan( event ) {

				panEnd.set( event.clientX, event.clientY );

				panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );

				pan( panDelta.x, panDelta.y );

				panStart.copy( panEnd );

				scope.update();

			}

			function handleMouseWheel( event ) {

				updateZoomParameters( event.clientX, event.clientY );

				if ( event.deltaY < 0 ) {

					dollyIn( getZoomScale( event.deltaY ) );

				} else if ( event.deltaY > 0 ) {

					dollyOut( getZoomScale( event.deltaY ) );

				}

				scope.update();

			}

			function handleKeyDown( event ) {

				let needsUpdate = false;

				switch ( event.code ) {

					case scope.keys.UP:

						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

							rotateUp( 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );

						} else {

							pan( 0, scope.keyPanSpeed );

						}

						needsUpdate = true;
						break;

					case scope.keys.BOTTOM:

						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

							rotateUp( - 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );

						} else {

							pan( 0, - scope.keyPanSpeed );

						}

						needsUpdate = true;
						break;

					case scope.keys.LEFT:

						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

							rotateLeft( 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );

						} else {

							pan( scope.keyPanSpeed, 0 );

						}

						needsUpdate = true;
						break;

					case scope.keys.RIGHT:

						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

							rotateLeft( - 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );

						} else {

							pan( - scope.keyPanSpeed, 0 );

						}

						needsUpdate = true;
						break;

				}

				if ( needsUpdate ) {

					// prevent the browser from scrolling on cursor keys
					event.preventDefault();

					scope.update();

				}


			}

			function handleTouchStartRotate( event ) {

				if ( pointers.length === 1 ) {

					rotateStart.set( event.pageX, event.pageY );

				} else {

					const position = getSecondPointerPosition( event );

					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );

					rotateStart.set( x, y );

				}

			}

			function handleTouchStartPan( event ) {

				if ( pointers.length === 1 ) {

					panStart.set( event.pageX, event.pageY );

				} else {

					const position = getSecondPointerPosition( event );

					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );

					panStart.set( x, y );

				}

			}

			function handleTouchStartDolly( event ) {

				const position = getSecondPointerPosition( event );

				const dx = event.pageX - position.x;
				const dy = event.pageY - position.y;

				const distance = Math.sqrt( dx * dx + dy * dy );

				dollyStart.set( 0, distance );

			}

			function handleTouchStartDollyPan( event ) {

				if ( scope.enableZoom ) handleTouchStartDolly( event );

				if ( scope.enablePan ) handleTouchStartPan( event );

			}

			function handleTouchStartDollyRotate( event ) {

				if ( scope.enableZoom ) handleTouchStartDolly( event );

				if ( scope.enableRotate ) handleTouchStartRotate( event );

			}

			function handleTouchMoveRotate( event ) {

				if ( pointers.length == 1 ) {

					rotateEnd.set( event.pageX, event.pageY );

				} else {

					const position = getSecondPointerPosition( event );

					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );

					rotateEnd.set( x, y );

				}

				rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );

				const element = scope.domElement;

				rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height

				rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );

				rotateStart.copy( rotateEnd );

			}

			function handleTouchMovePan( event ) {

				if ( pointers.length === 1 ) {

					panEnd.set( event.pageX, event.pageY );

				} else {

					const position = getSecondPointerPosition( event );

					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );

					panEnd.set( x, y );

				}

				panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );

				pan( panDelta.x, panDelta.y );

				panStart.copy( panEnd );

			}

			function handleTouchMoveDolly( event ) {

				const position = getSecondPointerPosition( event );

				const dx = event.pageX - position.x;
				const dy = event.pageY - position.y;

				const distance = Math.sqrt( dx * dx + dy * dy );

				dollyEnd.set( 0, distance );

				dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) );

				dollyOut( dollyDelta.y );

				dollyStart.copy( dollyEnd );

				const centerX = ( event.pageX + position.x ) * 0.5;
				const centerY = ( event.pageY + position.y ) * 0.5;

				updateZoomParameters( centerX, centerY );

			}

			function handleTouchMoveDollyPan( event ) {

				if ( scope.enableZoom ) handleTouchMoveDolly( event );

				if ( scope.enablePan ) handleTouchMovePan( event );

			}

			function handleTouchMoveDollyRotate( event ) {

				if ( scope.enableZoom ) handleTouchMoveDolly( event );

				if ( scope.enableRotate ) handleTouchMoveRotate( event );

			}

			//
			// event handlers - FSM: listen for events and reset state
			//

			function onPointerDown( event ) {

				if ( scope.enabled === false ) return;

				if ( pointers.length === 0 ) {

					scope.domElement.setPointerCapture( event.pointerId );

					scope.domElement.addEventListener( 'pointermove', onPointerMove );
					scope.domElement.addEventListener( 'pointerup', onPointerUp );

				}

				//

				if ( isTrackingPointer( event ) ) return;

				//

				addPointer( event );

				if ( event.pointerType === 'touch' ) {

					onTouchStart( event );

				} else {

					onMouseDown( event );

				}

			}

			function onPointerMove( event ) {

				if ( scope.enabled === false ) return;

				if ( event.pointerType === 'touch' ) {

					onTouchMove( event );

				} else {

					onMouseMove( event );

				}

			}

			function onPointerUp( event ) {

				removePointer( event );

				switch ( pointers.length ) {

					case 0:

						scope.domElement.releasePointerCapture( event.pointerId );

						scope.domElement.removeEventListener( 'pointermove', onPointerMove );
						scope.domElement.removeEventListener( 'pointerup', onPointerUp );

						scope.dispatchEvent( _endEvent );

						state = STATE.NONE;

						break;

					case 1:

						const pointerId = pointers[ 0 ];
						const position = pointerPositions[ pointerId ];

						// minimal placeholder event - allows state correction on pointer-up
						onTouchStart( { pointerId: pointerId, pageX: position.x, pageY: position.y } );

						break;

				}

			}

			function onMouseDown( event ) {

				let mouseAction;

				switch ( event.button ) {

					case 0:

						mouseAction = scope.mouseButtons.LEFT;
						break;

					case 1:

						mouseAction = scope.mouseButtons.MIDDLE;
						break;

					case 2:

						mouseAction = scope.mouseButtons.RIGHT;
						break;

					default:

						mouseAction = - 1;

				}

				switch ( mouseAction ) {

					case MOUSE.DOLLY:

						if ( scope.enableZoom === false ) return;

						handleMouseDownDolly( event );

						state = STATE.DOLLY;

						break;

					case MOUSE.ROTATE:

						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

							if ( scope.enablePan === false ) return;

							handleMouseDownPan( event );

							state = STATE.PAN;

						} else {

							if ( scope.enableRotate === false ) return;

							handleMouseDownRotate( event );

							state = STATE.ROTATE;

						}

						break;

					case MOUSE.PAN:

						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

							if ( scope.enableRotate === false ) return;

							handleMouseDownRotate( event );

							state = STATE.ROTATE;

						} else {

							if ( scope.enablePan === false ) return;

							handleMouseDownPan( event );

							state = STATE.PAN;

						}

						break;

					default:

						state = STATE.NONE;

				}

				if ( state !== STATE.NONE ) {

					scope.dispatchEvent( _startEvent );

				}

			}

			function onMouseMove( event ) {

				switch ( state ) {

					case STATE.ROTATE:

						if ( scope.enableRotate === false ) return;

						handleMouseMoveRotate( event );

						break;

					case STATE.DOLLY:

						if ( scope.enableZoom === false ) return;

						handleMouseMoveDolly( event );

						break;

					case STATE.PAN:

						if ( scope.enablePan === false ) return;

						handleMouseMovePan( event );

						break;

				}

			}

			function onMouseWheel( event ) {

				if ( scope.enabled === false || scope.enableZoom === false || state !== STATE.NONE ) return;

				event.preventDefault();

				scope.dispatchEvent( _startEvent );

				handleMouseWheel( customWheelEvent( event ) );

				scope.dispatchEvent( _endEvent );

			}

			function customWheelEvent( event ) {

				const mode = event.deltaMode;

				// minimal wheel event altered to meet delta-zoom demand
				const newEvent = {
					clientX: event.clientX,
					clientY: event.clientY,
					deltaY: event.deltaY,
				};

				switch ( mode ) {

					case 1: // LINE_MODE
						newEvent.deltaY *= 16;
						break;

					case 2: // PAGE_MODE
						newEvent.deltaY *= 100;
						break;

				}

				// detect if event was triggered by pinching
				if ( event.ctrlKey && ! controlActive ) {

					newEvent.deltaY *= 10;

				}

				return newEvent;

			}

			function interceptControlDown( event ) {

				if ( event.key === 'Control' ) {

					controlActive = true;


					const document = scope.domElement.getRootNode(); // offscreen canvas compatibility

					document.addEventListener( 'keyup', interceptControlUp, { passive: true, capture: true } );

				}

			}

			function interceptControlUp( event ) {

				if ( event.key === 'Control' ) {

					controlActive = false;


					const document = scope.domElement.getRootNode(); // offscreen canvas compatibility

					document.removeEventListener( 'keyup', interceptControlUp, { passive: true, capture: true } );

				}

			}

			function onKeyDown( event ) {

				if ( scope.enabled === false || scope.enablePan === false ) return;

				handleKeyDown( event );

			}

			function onTouchStart( event ) {

				trackPointer( event );

				switch ( pointers.length ) {

					case 1:

						switch ( scope.touches.ONE ) {

							case TOUCH.ROTATE:

								if ( scope.enableRotate === false ) return;

								handleTouchStartRotate( event );

								state = STATE.TOUCH_ROTATE;

								break;

							case TOUCH.PAN:

								if ( scope.enablePan === false ) return;

								handleTouchStartPan( event );

								state = STATE.TOUCH_PAN;

								break;

							default:

								state = STATE.NONE;

						}

						break;

					case 2:

						switch ( scope.touches.TWO ) {

							case TOUCH.DOLLY_PAN:

								if ( scope.enableZoom === false && scope.enablePan === false ) return;

								handleTouchStartDollyPan( event );

								state = STATE.TOUCH_DOLLY_PAN;

								break;

							case TOUCH.DOLLY_ROTATE:

								if ( scope.enableZoom === false && scope.enableRotate === false ) return;

								handleTouchStartDollyRotate( event );

								state = STATE.TOUCH_DOLLY_ROTATE;

								break;

							default:

								state = STATE.NONE;

						}

						break;

					default:

						state = STATE.NONE;

				}

				if ( state !== STATE.NONE ) {

					scope.dispatchEvent( _startEvent );

				}

			}

			function onTouchMove( event ) {

				trackPointer( event );

				switch ( state ) {

					case STATE.TOUCH_ROTATE:

						if ( scope.enableRotate === false ) return;

						handleTouchMoveRotate( event );

						scope.update();

						break;

					case STATE.TOUCH_PAN:

						if ( scope.enablePan === false ) return;

						handleTouchMovePan( event );

						scope.update();

						break;

					case STATE.TOUCH_DOLLY_PAN:

						if ( scope.enableZoom === false && scope.enablePan === false ) return;

						handleTouchMoveDollyPan( event );

						scope.update();

						break;

					case STATE.TOUCH_DOLLY_ROTATE:

						if ( scope.enableZoom === false && scope.enableRotate === false ) return;

						handleTouchMoveDollyRotate( event );

						scope.update();

						break;

					default:

						state = STATE.NONE;

				}

			}

			function onContextMenu( event ) {

				if ( scope.enabled === false ) return;

				event.preventDefault();

			}

			function addPointer( event ) {

				pointers.push( event.pointerId );

			}

			function removePointer( event ) {

				delete pointerPositions[ event.pointerId ];

				for ( let i = 0; i < pointers.length; i ++ ) {

					if ( pointers[ i ] == event.pointerId ) {

						pointers.splice( i, 1 );
						return;

					}

				}

			}

			function isTrackingPointer( event ) {

				for ( let i = 0; i < pointers.length; i ++ ) {

					if ( pointers[ i ] == event.pointerId ) return true;

				}

				return false;

			}

			function trackPointer( event ) {

				let position = pointerPositions[ event.pointerId ];

				if ( position === undefined ) {

					position = new Vector2();
					pointerPositions[ event.pointerId ] = position;

				}

				position.set( event.pageX, event.pageY );

			}

			function getSecondPointerPosition( event ) {

				const pointerId = ( event.pointerId === pointers[ 0 ] ) ? pointers[ 1 ] : pointers[ 0 ];

				return pointerPositions[ pointerId ];

			}

			//

			scope.domElement.addEventListener( 'contextmenu', onContextMenu );

			scope.domElement.addEventListener( 'pointerdown', onPointerDown );
			scope.domElement.addEventListener( 'pointercancel', onPointerUp );
			scope.domElement.addEventListener( 'wheel', onMouseWheel, { passive: false } );

			const document = scope.domElement.getRootNode(); // offscreen canvas compatibility

			document.addEventListener( 'keydown', interceptControlDown, { passive: true, capture: true } );

			// force an update at start

			this.update();

		}

	}

	//export { OrbitControls };




	class RoomEnvironment extends Scene {

		constructor( renderer = null ) {

			super();

			const geometry = new BoxGeometry();
			geometry.deleteAttribute( 'uv' );

			const roomMaterial = new MeshStandardMaterial( { side: BackSide } );
			const boxMaterial = new MeshStandardMaterial();

			let intensity = 5;

			if ( renderer !== null && renderer._useLegacyLights === false ) intensity = 900;

			const mainLight = new PointLight( 0xffffff, intensity, 28, 2 );
			mainLight.position.set( 0.418, 16.199, 0.300 );
			this.add( mainLight );

			const room = new Mesh( geometry, roomMaterial );
			room.position.set( - 0.757, 13.219, 0.717 );
			room.scale.set( 31.713, 28.305, 28.591 );
			this.add( room );

			const box1 = new Mesh( geometry, boxMaterial );
			box1.position.set( - 10.906, 2.009, 1.846 );
			box1.rotation.set( 0, - 0.195, 0 );
			box1.scale.set( 2.328, 7.905, 4.651 );
			this.add( box1 );

			const box2 = new Mesh( geometry, boxMaterial );
			box2.position.set( - 5.607, - 0.754, - 0.758 );
			box2.rotation.set( 0, 0.994, 0 );
			box2.scale.set( 1.970, 1.534, 3.955 );
			this.add( box2 );

			const box3 = new Mesh( geometry, boxMaterial );
			box3.position.set( 6.167, 0.857, 7.803 );
			box3.rotation.set( 0, 0.561, 0 );
			box3.scale.set( 3.927, 6.285, 3.687 );
			this.add( box3 );

			const box4 = new Mesh( geometry, boxMaterial );
			box4.position.set( - 2.017, 0.018, 6.124 );
			box4.rotation.set( 0, 0.333, 0 );
			box4.scale.set( 2.002, 4.566, 2.064 );
			this.add( box4 );

			const box5 = new Mesh( geometry, boxMaterial );
			box5.position.set( 2.291, - 0.756, - 2.621 );
			box5.rotation.set( 0, - 0.286, 0 );
			box5.scale.set( 1.546, 1.552, 1.496 );
			this.add( box5 );

			const box6 = new Mesh( geometry, boxMaterial );
			box6.position.set( - 2.193, - 0.369, - 5.547 );
			box6.rotation.set( 0, 0.516, 0 );
			box6.scale.set( 3.875, 3.487, 2.986 );
			this.add( box6 );


			// -x right
			const light1 = new Mesh( geometry, createAreaLightMaterial( 50 ) );
			light1.position.set( - 16.116, 14.37, 8.208 );
			light1.scale.set( 0.1, 2.428, 2.739 );
			this.add( light1 );

			// -x left
			const light2 = new Mesh( geometry, createAreaLightMaterial( 50 ) );
			light2.position.set( - 16.109, 18.021, - 8.207 );
			light2.scale.set( 0.1, 2.425, 2.751 );
			this.add( light2 );

			// +x
			const light3 = new Mesh( geometry, createAreaLightMaterial( 17 ) );
			light3.position.set( 14.904, 12.198, - 1.832 );
			light3.scale.set( 0.15, 4.265, 6.331 );
			this.add( light3 );

			// +z
			const light4 = new Mesh( geometry, createAreaLightMaterial( 43 ) );
			light4.position.set( - 0.462, 8.89, 14.520 );
			light4.scale.set( 4.38, 5.441, 0.088 );
			this.add( light4 );

			// -z
			const light5 = new Mesh( geometry, createAreaLightMaterial( 20 ) );
			light5.position.set( 3.235, 11.486, - 12.541 );
			light5.scale.set( 2.5, 2.0, 0.1 );
			this.add( light5 );

			// +y
			const light6 = new Mesh( geometry, createAreaLightMaterial( 100 ) );
			light6.position.set( 0.0, 20.0, 0.0 );
			light6.scale.set( 1.0, 0.1, 1.0 );
			this.add( light6 );

		}

		dispose() {

			const resources = new Set();

			this.traverse( ( object ) => {

				if ( object.isMesh ) {

					resources.add( object.geometry );
					resources.add( object.material );

				}

			} );

			for ( const resource of resources ) {

				resource.dispose();

			}

		}

	}

	function createAreaLightMaterial( intensity ) {

		const material = new MeshBasicMaterial();
		material.color.setScalar( intensity );
		return material;

	}

	//export { RoomEnvironment };



	// Special surface finish tag types.
	// Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented
	const FINISH_TYPE_DEFAULT = 0;
	const FINISH_TYPE_CHROME = 1;
	const FINISH_TYPE_PEARLESCENT = 2;
	const FINISH_TYPE_RUBBER = 3;
	const FINISH_TYPE_MATTE_METALLIC = 4;
	const FINISH_TYPE_METAL = 5;

	// State machine to search a subobject path.
	// The LDraw standard establishes these various possible subfolders.
	const FILE_LOCATION_TRY_PARTS = 0;
	const FILE_LOCATION_TRY_P = 1;
	const FILE_LOCATION_TRY_MODELS = 2;
	const FILE_LOCATION_AS_IS = 3;
	const FILE_LOCATION_TRY_RELATIVE = 4;
	const FILE_LOCATION_TRY_ABSOLUTE = 5;
	const FILE_LOCATION_NOT_FOUND = 6;

	const MAIN_COLOUR_CODE = '16';
	const MAIN_EDGE_COLOUR_CODE = '24';

	const COLOR_SPACE_LDRAW = SRGBColorSpace;

	const _tempVec0 = new Vector3();
	const _tempVec1 = new Vector3();

	class LDrawConditionalLineMaterial extends ShaderMaterial {

		constructor( parameters ) {

			super( {

				uniforms: UniformsUtils.merge( [
					UniformsLib.fog,
					{
						diffuse: {
							value: new Color()
						},
						opacity: {
							value: 1.0
						}
					}
				] ),

				vertexShader: /* glsl */`
					attribute vec3 control0;
					attribute vec3 control1;
					attribute vec3 direction;
					varying float discardFlag;

					#include <common>
					#include <color_pars_vertex>
					#include <fog_pars_vertex>
					#include <logdepthbuf_pars_vertex>
					#include <clipping_planes_pars_vertex>
					void main() {
						#include <color_vertex>

						vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
						gl_Position = projectionMatrix * mvPosition;

						// Transform the line segment ends and control points into camera clip space
						vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 );
						vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 );
						vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
						vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 );

						c0.xy /= c0.w;
						c1.xy /= c1.w;
						p0.xy /= p0.w;
						p1.xy /= p1.w;

						// Get the direction of the segment and an orthogonal vector
						vec2 dir = p1.xy - p0.xy;
						vec2 norm = vec2( -dir.y, dir.x );

						// Get control point directions from the line
						vec2 c0dir = c0.xy - p1.xy;
						vec2 c1dir = c1.xy - p1.xy;

						// If the vectors to the controls points are pointed in different directions away
						// from the line segment then the line should not be drawn.
						float d0 = dot( normalize( norm ), normalize( c0dir ) );
						float d1 = dot( normalize( norm ), normalize( c1dir ) );
						discardFlag = float( sign( d0 ) != sign( d1 ) );

						#include <logdepthbuf_vertex>
						#include <clipping_planes_vertex>
						#include <fog_vertex>
					}
				`,

				fragmentShader: /* glsl */`
				uniform vec3 diffuse;
				uniform float opacity;
				varying float discardFlag;

				#include <common>
				#include <color_pars_fragment>
				#include <fog_pars_fragment>
				#include <logdepthbuf_pars_fragment>
				#include <clipping_planes_pars_fragment>
				void main() {

					if ( discardFlag > 0.5 ) discard;

					#include <clipping_planes_fragment>
					vec3 outgoingLight = vec3( 0.0 );
					vec4 diffuseColor = vec4( diffuse, opacity );
					#include <logdepthbuf_fragment>
					#include <color_fragment>
					outgoingLight = diffuseColor.rgb; // simple shader
					gl_FragColor = vec4( outgoingLight, diffuseColor.a );
					#include <tonemapping_fragment>
					#include <colorspace_fragment>
					#include <fog_fragment>
					#include <premultiplied_alpha_fragment>
				}
				`,

			} );

			Object.defineProperties( this, {

				opacity: {
					get: function () {

						return this.uniforms.opacity.value;

					},

					set: function ( value ) {

						this.uniforms.opacity.value = value;

					}
				},

				color: {
					get: function () {

						return this.uniforms.diffuse.value;

					}
				}

			} );

			this.setValues( parameters );
			this.isLDrawConditionalLineMaterial = true;

		}

	}

	class ConditionalLineSegments extends LineSegments {

		constructor( geometry, material ) {

			super( geometry, material );
			this.isConditionalLine = true;

		}

	}

	function generateFaceNormals( faces ) {

		for ( let i = 0, l = faces.length; i < l; i ++ ) {

			const face = faces[ i ];
			const vertices = face.vertices;
			const v0 = vertices[ 0 ];
			const v1 = vertices[ 1 ];
			const v2 = vertices[ 2 ];

			_tempVec0.subVectors( v1, v0 );
			_tempVec1.subVectors( v2, v1 );
			face.faceNormal = new Vector3()
				.crossVectors( _tempVec0, _tempVec1 )
				.normalize();

		}

	}

	//const _ray = new Ray();
	function smoothNormals( faces, lineSegments, checkSubSegments = false ) {

		// NOTE: 1e2 is pretty coarse but was chosen to quantize the resulting value because
		// it allows edges to be smoothed as expected (see minifig arms).
		// --
		// And the vector values are initialize multiplied by 1 + 1e-10 to account for floating
		// point errors on vertices along quantization boundaries. Ie after matrix multiplication
		// vertices that should be merged might be set to "1.7" and "1.6999..." meaning they won't
		// get merged. This added epsilon attempts to push these error values to the same quantized
		// value for the sake of hashing. See "AT-ST mini" dishes. See mrdoob/three#23169.

		const hashMultiplier = ( 1 + 1e-10 ) * 1e2;
		function hashVertex( v ) {

			const x = ~ ~ ( v.x * hashMultiplier );
			const y = ~ ~ ( v.y * hashMultiplier );
			const z = ~ ~ ( v.z * hashMultiplier );

			return `${ x },${ y },${ z }`;

		}

		function hashEdge( v0, v1 ) {

			return `${ hashVertex( v0 ) }_${ hashVertex( v1 ) }`;

		}

		// converts the two vertices to a ray with a normalized direction and origin of 0, 0, 0 projected
		// onto the original line.
		function toNormalizedRay( v0, v1, targetRay ) {

			targetRay.direction.subVectors( v1, v0 ).normalize();

			const scalar = v0.dot( targetRay.direction );
			targetRay.origin.copy( v0 ).addScaledVector( targetRay.direction, - scalar );

			return targetRay;

		}

		function hashRay( ray ) {

			return hashEdge( ray.origin, ray.direction );

		}

		const hardEdges = new Set();
		const hardEdgeRays = new Map();
		const halfEdgeList = {};
		const normals = [];

		// Save the list of hard edges by hash
		for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {

			const ls = lineSegments[ i ];
			const vertices = ls.vertices;
			const v0 = vertices[ 0 ];
			const v1 = vertices[ 1 ];
			hardEdges.add( hashEdge( v0, v1 ) );
			hardEdges.add( hashEdge( v1, v0 ) );

			// only generate the hard edge ray map if we're checking subsegments because it's more expensive to check
			// and requires more memory.
			if ( checkSubSegments ) {

				// add both ray directions to the map
				const ray = toNormalizedRay( v0, v1, new Ray() );
				const rh1 = hashRay( ray );
				if ( ! hardEdgeRays.has( rh1 ) ) {

					toNormalizedRay( v1, v0, ray );
					const rh2 = hashRay( ray );

					const info = {
						ray,
						distances: [],
					};

					hardEdgeRays.set( rh1, info );
					hardEdgeRays.set( rh2, info );

				}

				// store both segments ends in min, max order in the distances array to check if a face edge is a
				// subsegment later.
				const info = hardEdgeRays.get( rh1 );
				let d0 = info.ray.direction.dot( v0 );
				let d1 = info.ray.direction.dot( v1 );
				if ( d0 > d1 ) {

					[ d0, d1 ] = [ d1, d0 ];

				}

				info.distances.push( d0, d1 );

			}

		}

		// track the half edges associated with each triangle
		for ( let i = 0, l = faces.length; i < l; i ++ ) {

			const tri = faces[ i ];
			const vertices = tri.vertices;
			const vertCount = vertices.length;
			for ( let i2 = 0; i2 < vertCount; i2 ++ ) {

				const index = i2;
				const next = ( i2 + 1 ) % vertCount;
				const v0 = vertices[ index ];
				const v1 = vertices[ next ];
				const hash = hashEdge( v0, v1 );

				// don't add the triangle if the edge is supposed to be hard
				if ( hardEdges.has( hash ) ) {

					continue;

				}

				// if checking subsegments then check to see if this edge lies on a hard edge ray and whether its within any ray bounds
				if ( checkSubSegments ) {

					toNormalizedRay( v0, v1, _ray );

					const rayHash = hashRay( _ray );
					if ( hardEdgeRays.has( rayHash ) ) {

						const info = hardEdgeRays.get( rayHash );
						const { ray, distances } = info;
						let d0 = ray.direction.dot( v0 );
						let d1 = ray.direction.dot( v1 );

						if ( d0 > d1 ) {

							[ d0, d1 ] = [ d1, d0 ];

						}

						// return early if the face edge is found to be a subsegment of a line edge meaning the edge will have "hard" normals
						let found = false;
						for ( let i = 0, l = distances.length; i < l; i += 2 ) {

							if ( d0 >= distances[ i ] && d1 <= distances[ i + 1 ] ) {

								found = true;
								break;

							}

						}

						if ( found ) {

							continue;

						}

					}

				}

				const info = {
					index: index,
					tri: tri
				};
				halfEdgeList[ hash ] = info;

			}

		}

		// Iterate until we've tried to connect all faces to share normals
		while ( true ) {

			// Stop if there are no more faces left
			let halfEdge = null;
			for ( const key in halfEdgeList ) {

				halfEdge = halfEdgeList[ key ];
				break;

			}

			if ( halfEdge === null ) {

				break;

			}

			// Exhaustively find all connected faces
			const queue = [ halfEdge ];
			while ( queue.length > 0 ) {

				// initialize all vertex normals in this triangle
				const tri = queue.pop().tri;
				const vertices = tri.vertices;
				const vertNormals = tri.normals;
				const faceNormal = tri.faceNormal;

				// Check if any edge is connected to another triangle edge
				const vertCount = vertices.length;
				for ( let i2 = 0; i2 < vertCount; i2 ++ ) {

					const index = i2;
					const next = ( i2 + 1 ) % vertCount;
					const v0 = vertices[ index ];
					const v1 = vertices[ next ];

					// delete this triangle from the list so it won't be found again
					const hash = hashEdge( v0, v1 );
					delete halfEdgeList[ hash ];

					const reverseHash = hashEdge( v1, v0 );
					const otherInfo = halfEdgeList[ reverseHash ];
					if ( otherInfo ) {

						const otherTri = otherInfo.tri;
						const otherIndex = otherInfo.index;
						const otherNormals = otherTri.normals;
						const otherVertCount = otherNormals.length;
						const otherFaceNormal = otherTri.faceNormal;

						// NOTE: If the angle between faces is > 67.5 degrees then assume it's
						// hard edge. There are some cases where the line segments do not line up exactly
						// with or span multiple triangle edges (see Lunar Vehicle wheels).
						if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) {

							continue;

						}

						// if this triangle has already been traversed then it won't be in
						// the halfEdgeList. If it has not then add it to the queue and delete
						// it so it won't be found again.
						if ( reverseHash in halfEdgeList ) {

							queue.push( otherInfo );
							delete halfEdgeList[ reverseHash ];

						}

						// share the first normal
						const otherNext = ( otherIndex + 1 ) % otherVertCount;
						if (
							vertNormals[ index ] && otherNormals[ otherNext ] &&
							vertNormals[ index ] !== otherNormals[ otherNext ]
						) {

							otherNormals[ otherNext ].norm.add( vertNormals[ index ].norm );
							vertNormals[ index ].norm = otherNormals[ otherNext ].norm;

						}

						let sharedNormal1 = vertNormals[ index ] || otherNormals[ otherNext ];
						if ( sharedNormal1 === null ) {

							// it's possible to encounter an edge of a triangle that has already been traversed meaning
							// both edges already have different normals defined and shared. To work around this we create
							// a wrapper object so when those edges are merged the normals can be updated everywhere.
							sharedNormal1 = { norm: new Vector3() };
							normals.push( sharedNormal1.norm );

						}

						if ( vertNormals[ index ] === null ) {

							vertNormals[ index ] = sharedNormal1;
							sharedNormal1.norm.add( faceNormal );

						}

						if ( otherNormals[ otherNext ] === null ) {

							otherNormals[ otherNext ] = sharedNormal1;
							sharedNormal1.norm.add( otherFaceNormal );

						}

						// share the second normal
						if (
							vertNormals[ next ] && otherNormals[ otherIndex ] &&
							vertNormals[ next ] !== otherNormals[ otherIndex ]
						) {

							otherNormals[ otherIndex ].norm.add( vertNormals[ next ].norm );
							vertNormals[ next ].norm = otherNormals[ otherIndex ].norm;

						}

						let sharedNormal2 = vertNormals[ next ] || otherNormals[ otherIndex ];
						if ( sharedNormal2 === null ) {

							sharedNormal2 = { norm: new Vector3() };
							normals.push( sharedNormal2.norm );

						}

						if ( vertNormals[ next ] === null ) {

							vertNormals[ next ] = sharedNormal2;
							sharedNormal2.norm.add( faceNormal );

						}

						if ( otherNormals[ otherIndex ] === null ) {

							otherNormals[ otherIndex ] = sharedNormal2;
							sharedNormal2.norm.add( otherFaceNormal );

						}

					}

				}

			}

		}

		// The normals of each face have been added up so now we average them by normalizing the vector.
		for ( let i = 0, l = normals.length; i < l; i ++ ) {

			normals[ i ].normalize();

		}

	}

	function isPartType( type ) {

		return type === 'Part' || type === 'Unofficial_Part';

	}

	function isPrimitiveType( type ) {

		return /primitive/i.test( type ) || type === 'Subpart';

	}

	class LineParser {

		constructor( line, lineNumber ) {

			this.line = line;
			this.lineLength = line.length;
			this.currentCharIndex = 0;
			this.currentChar = ' ';
			this.lineNumber = lineNumber;

		}

		seekNonSpace() {

			while ( this.currentCharIndex < this.lineLength ) {

				this.currentChar = this.line.charAt( this.currentCharIndex );

				if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) {

					return;

				}

				this.currentCharIndex ++;

			}

		}

		getToken() {

			const pos0 = this.currentCharIndex ++;

			// Seek space
			while ( this.currentCharIndex < this.lineLength ) {

				this.currentChar = this.line.charAt( this.currentCharIndex );

				if ( this.currentChar === ' ' || this.currentChar === '\t' ) {

					break;

				}

				this.currentCharIndex ++;

			}

			const pos1 = this.currentCharIndex;

			this.seekNonSpace();

			return this.line.substring( pos0, pos1 );

		}

		getVector() {

			return new Vector3( parseFloat( this.getToken() ), parseFloat( this.getToken() ), parseFloat( this.getToken() ) );

		}

		getRemainingString() {

			return this.line.substring( this.currentCharIndex, this.lineLength );

		}

		isAtTheEnd() {

			return this.currentCharIndex >= this.lineLength;

		}

		setToEnd() {

			this.currentCharIndex = this.lineLength;

		}

		getLineNumberString() {

			return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : '';

		}

	}

	// Fetches and parses an intermediate representation of LDraw parts files.
	class LDrawParsedCache {

		constructor( loader ) {

			this.loader = loader;
			this._cache = {};

		}

		cloneResult( original ) {

			const result = {};

			// vertices are transformed and normals computed before being converted to geometry
			// so these pieces must be cloned.
			result.faces = original.faces.map( face => {

				return {
					colorCode: face.colorCode,
					material: face.material,
					vertices: face.vertices.map( v => v.clone() ),
					normals: face.normals.map( () => null ),
					faceNormal: null
				};

			} );

			result.conditionalSegments = original.conditionalSegments.map( face => {

				return {
					colorCode: face.colorCode,
					material: face.material,
					vertices: face.vertices.map( v => v.clone() ),
					controlPoints: face.controlPoints.map( v => v.clone() )
				};

			} );

			result.lineSegments = original.lineSegments.map( face => {

				return {
					colorCode: face.colorCode,
					material: face.material,
					vertices: face.vertices.map( v => v.clone() )
				};

			} );

			// none if this is subsequently modified
			result.type = original.type;
			result.category = original.category;
			result.keywords = original.keywords;
			result.author = original.author;
			result.subobjects = original.subobjects;
			result.fileName = original.fileName;
			result.totalFaces = original.totalFaces;
			result.startingBuildingStep = original.startingBuildingStep;
			result.materials = original.materials;
			result.group = null;
			return result;

		}

		async fetchData( fileName ) {

			let triedLowerCase = false;
			let locationState = FILE_LOCATION_TRY_PARTS;
			while ( locationState !== FILE_LOCATION_NOT_FOUND ) {

				let subobjectURL = fileName;
				switch ( locationState ) {

					case FILE_LOCATION_AS_IS:
						locationState = locationState + 1;
						break;

					case FILE_LOCATION_TRY_PARTS:
						subobjectURL = 'parts/' + subobjectURL;
						locationState = locationState + 1;
						break;

					case FILE_LOCATION_TRY_P:
						subobjectURL = 'p/' + subobjectURL;
						locationState = locationState + 1;
						break;

					case FILE_LOCATION_TRY_MODELS:
						subobjectURL = 'models/' + subobjectURL;
						locationState = locationState + 1;
						break;

					case FILE_LOCATION_TRY_RELATIVE:
						subobjectURL = fileName.substring( 0, fileName.lastIndexOf( '/' ) + 1 ) + subobjectURL;
						locationState = locationState + 1;
						break;

					case FILE_LOCATION_TRY_ABSOLUTE:

						if ( triedLowerCase ) {

							// Try absolute path
							locationState = FILE_LOCATION_NOT_FOUND;

						} else {

							// Next attempt is lower case
							fileName = fileName.toLowerCase();
							subobjectURL = fileName;
							triedLowerCase = true;
							locationState = FILE_LOCATION_TRY_PARTS;

						}

						break;

				}

				const loader = this.loader;
				const fileLoader = new FileLoader( loader.manager );
				fileLoader.setPath( loader.partsLibraryPath );
				fileLoader.setRequestHeader( loader.requestHeader );
				fileLoader.setWithCredentials( loader.withCredentials );

				try {

					const text = await fileLoader.loadAsync( subobjectURL );
					return text;

				} catch ( _ ) {

					continue;

				}

			}

			throw new Error( 'LDrawLoader: Subobject "' + fileName + '" could not be loaded.' );

		}

		parse( text, fileName = null ) {

			const loader = this.loader;

			// final results
			const faces = [];
			const lineSegments = [];
			const conditionalSegments = [];
			const subobjects = [];
			const materials = {};

			const getLocalMaterial = colorCode => {

				return materials[ colorCode ] || null;

			};

			let type = 'Model';
			let category = null;
			let keywords = null;
			let author = null;
			let totalFaces = 0;

			// split into lines
			if ( text.indexOf( '\r\n' ) !== - 1 ) {

				// This is faster than String.split with regex that splits on both
				text = text.replace( /\r\n/g, '\n' );

			}

			const lines = text.split( '\n' );
			const numLines = lines.length;

			let parsingEmbeddedFiles = false;
			let currentEmbeddedFileName = null;
			let currentEmbeddedText = null;

			let bfcCertified = false;
			let bfcCCW = true;
			let bfcInverted = false;
			let bfcCull = true;

			let startingBuildingStep = false;

			try{
				// Parse all line commands
				for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) {

					const line = lines[ lineIndex ];

					if ( line.length === 0 ) continue;

					if ( parsingEmbeddedFiles ) {

						if ( line.startsWith( '0 FILE ' ) ) {

							// Save previous embedded file in the cache
							this.setData( currentEmbeddedFileName, currentEmbeddedText );

							// New embedded text file
							currentEmbeddedFileName = line.substring( 7 );
							currentEmbeddedText = '';

						} else {

							currentEmbeddedText += line + '\n';

						}

						continue;

					}

					const lp = new LineParser( line, lineIndex + 1 );
					lp.seekNonSpace();

					if ( lp.isAtTheEnd() ) {

						// Empty line
						continue;

					}

					// Parse the line type
					const lineType = lp.getToken();

					let material;
					let colorCode;
					let segment;
					let ccw;
					let doubleSided;
					let v0, v1, v2, v3, c0, c1;

					switch ( lineType ) {

						// Line type 0: Comment or META
						case '0':

							// Parse meta directive
							const meta = lp.getToken();

							if ( meta ) {

								switch ( meta ) {

									case '!LDRAW_ORG':

										type = lp.getToken();
										break;

									case '!COLOUR':

										material = loader.parseColorMetaDirective( lp );
										if ( material ) {

											materials[ material.userData.code ] = material;

										}	else {

											console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() );

										}

										break;

									case '!CATEGORY':

										category = lp.getToken();
										break;

									case '!KEYWORDS':

										const newKeywords = lp.getRemainingString().split( ',' );
										if ( newKeywords.length > 0 ) {

											if ( ! keywords ) {

												keywords = [];

											}

											newKeywords.forEach( function ( keyword ) {

												keywords.push( keyword.trim() );

											} );

										}

										break;

									case 'FILE':

										if ( lineIndex > 0 ) {

											// Start embedded text files parsing
											parsingEmbeddedFiles = true;
											currentEmbeddedFileName = lp.getRemainingString();
											currentEmbeddedText = '';

											bfcCertified = false;
											bfcCCW = true;

										}

										break;

									case 'BFC':

										// Changes to the backface culling state
										while ( ! lp.isAtTheEnd() ) {

											const token = lp.getToken();

											switch ( token ) {

												case 'CERTIFY':
												case 'NOCERTIFY':

													bfcCertified = token === 'CERTIFY';
													bfcCCW = true;

													break;

												case 'CW':
												case 'CCW':

													bfcCCW = token === 'CCW';

													break;

												case 'INVERTNEXT':

													bfcInverted = true;

													break;

												case 'CLIP':
												case 'NOCLIP':

													bfcCull = token === 'CLIP';

													break;

												default:

													console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' );

													break;

											}

										}

										break;

									case 'STEP':

										startingBuildingStep = true;

										break;

									case 'Author:':

										author = lp.getToken();

										break;

									default:
										// Other meta directives are not implemented
										break;

								}

							}

							break;

							// Line type 1: Sub-object file
						case '1':

							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );

							const posX = parseFloat( lp.getToken() );
							const posY = parseFloat( lp.getToken() );
							const posZ = parseFloat( lp.getToken() );
							const m0 = parseFloat( lp.getToken() );
							const m1 = parseFloat( lp.getToken() );
							const m2 = parseFloat( lp.getToken() );
							const m3 = parseFloat( lp.getToken() );
							const m4 = parseFloat( lp.getToken() );
							const m5 = parseFloat( lp.getToken() );
							const m6 = parseFloat( lp.getToken() );
							const m7 = parseFloat( lp.getToken() );
							const m8 = parseFloat( lp.getToken() );

							const matrix = new Matrix4().set(
								m0, m1, m2, posX,
								m3, m4, m5, posY,
								m6, m7, m8, posZ,
								0, 0, 0, 1
							);

							let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' );

							if ( loader.fileMap[ fileName ] ) {

								// Found the subobject path in the preloaded file path map
								fileName = loader.fileMap[ fileName ];

							} else {

								// Standardized subfolders
								if ( fileName.startsWith( 's/' ) ) {

									fileName = 'parts/' + fileName;

								} else if ( fileName.startsWith( '48/' ) ) {

									fileName = 'p/' + fileName;

								}

							}

							subobjects.push( {
								material: material,
								colorCode: colorCode,
								matrix: matrix,
								fileName: fileName,
								inverted: bfcInverted,
								startingBuildingStep: startingBuildingStep
							} );

							startingBuildingStep = false;
							bfcInverted = false;

							break;

							// Line type 2: Line segment
						case '2':

							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							v0 = lp.getVector();
							v1 = lp.getVector();

							segment = {
								material: material,
								colorCode: colorCode,
								vertices: [ v0, v1 ],
							};

							lineSegments.push( segment );

							break;

							// Line type 5: Conditional Line segment
						case '5':

							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							v0 = lp.getVector();
							v1 = lp.getVector();
							c0 = lp.getVector();
							c1 = lp.getVector();

							segment = {
								material: material,
								colorCode: colorCode,
								vertices: [ v0, v1 ],
								controlPoints: [ c0, c1 ],
							};

							conditionalSegments.push( segment );

							break;

							// Line type 3: Triangle
						case '3':

							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							ccw = bfcCCW;
							doubleSided = ! bfcCertified || ! bfcCull;

							if ( ccw === true ) {

								v0 = lp.getVector();
								v1 = lp.getVector();
								v2 = lp.getVector();

							} else {

								v2 = lp.getVector();
								v1 = lp.getVector();
								v0 = lp.getVector();

							}

							faces.push( {
								material: material,
								colorCode: colorCode,
								faceNormal: null,
								vertices: [ v0, v1, v2 ],
								normals: [ null, null, null ],
							} );
							totalFaces ++;

							if ( doubleSided === true ) {

								faces.push( {
									material: material,
									colorCode: colorCode,
									faceNormal: null,
									vertices: [ v2, v1, v0 ],
									normals: [ null, null, null ],
								} );
								totalFaces ++;

							}

							break;

							// Line type 4: Quadrilateral
						case '4':

							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							ccw = bfcCCW;
							doubleSided = ! bfcCertified || ! bfcCull;

							if ( ccw === true ) {

								v0 = lp.getVector();
								v1 = lp.getVector();
								v2 = lp.getVector();
								v3 = lp.getVector();

							} else {

								v3 = lp.getVector();
								v2 = lp.getVector();
								v1 = lp.getVector();
								v0 = lp.getVector();

							}

							// specifically place the triangle diagonal in the v0 and v1 slots so we can
							// account for the doubling of vertices later when smoothing normals.
							faces.push( {
								material: material,
								colorCode: colorCode,
								faceNormal: null,
								vertices: [ v0, v1, v2, v3 ],
								normals: [ null, null, null, null ],
							} );
							totalFaces += 2;

							if ( doubleSided === true ) {

								faces.push( {
									material: material,
									colorCode: colorCode,
									faceNormal: null,
									vertices: [ v3, v2, v1, v0 ],
									normals: [ null, null, null, null ],
								} );
								totalFaces += 2;

							}

							break;

						default:
							throw new Error( 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.' );

					}

				}
			}catch(error){
				console.error(error);
			}

			if ( parsingEmbeddedFiles ) {

				this.setData( currentEmbeddedFileName, currentEmbeddedText );

			}

			return {
				faces,
				conditionalSegments,
				lineSegments,
				type,
				category,
				keywords,
				author,
				subobjects,
				totalFaces,
				startingBuildingStep,
				materials,
				fileName,
				group: null
			};

		}

		// returns an (optionally cloned) instance of the data
		getData( fileName, clone = true ) {

			const key = fileName.toLowerCase();
			const result = this._cache[ key ];
			if ( result === null || result instanceof Promise ) {

				return null;

			}

			if ( clone ) {

				return this.cloneResult( result );

			} else {

				return result;

			}

		}

		// kicks off a fetch and parse of the requested data if it hasn't already been loaded. Returns when
		// the data is ready to use and can be retrieved synchronously with "getData".
		async ensureDataLoaded( fileName ) {

			const key = fileName.toLowerCase();
			if ( ! ( key in this._cache ) ) {

				// replace the promise with a copy of the parsed data for immediate processing
				this._cache[ key ] = this.fetchData( fileName ).then( text => {

					const info = this.parse( text, fileName );
					this._cache[ key ] = info;
					return info;

				} );

			}

			await this._cache[ key ];

		}

		// sets the data in the cache from parsed data
		setData( fileName, text ) {

			const key = fileName.toLowerCase();
			this._cache[ key ] = this.parse( text, fileName );

		}

	}

	// returns the material for an associated color code. If the color code is 16 for a face or 24 for
	// an edge then the passthroughColorCode is used.
	function getMaterialFromCode( colorCode, parentColorCode, materialHierarchy, forEdge ) {

		const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE;
		if ( isPassthrough ) {

			colorCode = parentColorCode;

		}

		return materialHierarchy[ colorCode ] || null;

	}

	// Class used to parse and build LDraw parts as three.js objects and cache them if they're a "Part" type.
	class LDrawPartsGeometryCache {

		constructor( loader ) {

			this.loader = loader;
			this.parseCache = new LDrawParsedCache( loader );
			this._cache = {};

		}

		// Convert the given file information into a mesh by processing subobjects.
		async processIntoMesh( info ) {

			const loader = this.loader;
			const parseCache = this.parseCache;
			const faceMaterials = new Set();

			// Processes the part subobject information to load child parts and merge geometry onto part
			// piece object.
			const processInfoSubobjects = async ( info, subobject = null ) => {

				const subobjects = info.subobjects;
				const promises = [];

				// Trigger load of all subobjects. If a subobject isn't a primitive then load it as a separate
				// group which lets instruction steps apply correctly.
				for ( let i = 0, l = subobjects.length; i < l; i ++ ) {

					const subobject = subobjects[ i ];
					const promise = parseCache.ensureDataLoaded( subobject.fileName ).then( () => {

						const subobjectInfo = parseCache.getData( subobject.fileName, false );
						if ( ! isPrimitiveType( subobjectInfo.type ) ) {

							return this.loadModel( subobject.fileName ).catch( error => {

								console.warn( error );
								return null;

							} );

						}

						return processInfoSubobjects( parseCache.getData( subobject.fileName ), subobject );

					} );

					promises.push( promise );

				}

				const group = new Group();
				group.userData.category = info.category;
				group.userData.keywords = info.keywords;
				group.userData.author = info.author;
				group.userData.type = info.type;
				group.userData.fileName = info.fileName;
				info.group = group;

				const subobjectInfos = await Promise.all( promises );
				for ( let i = 0, l = subobjectInfos.length; i < l; i ++ ) {

					const subobject = info.subobjects[ i ];
					const subobjectInfo = subobjectInfos[ i ];

					if ( subobjectInfo === null ) {

						// the subobject failed to load
						continue;

					}

					// if the subobject was loaded as a separate group then apply the parent scopes materials
					if ( subobjectInfo.isGroup ) {

						const subobjectGroup = subobjectInfo;
						subobject.matrix.decompose( subobjectGroup.position, subobjectGroup.quaternion, subobjectGroup.scale );
						subobjectGroup.userData.startingBuildingStep = subobject.startingBuildingStep;
						subobjectGroup.name = subobject.fileName;

						loader.applyMaterialsToMesh( subobjectGroup, subobject.colorCode, info.materials );
						subobjectGroup.userData.colorCode = subobject.colorCode;

						group.add( subobjectGroup );
						continue;

					}

					// add the subobject group if it has children in case it has both children and primitives
					if ( subobjectInfo.group.children.length ) {

						group.add( subobjectInfo.group );

					}

					// transform the primitives into the local space of the parent piece and append them to
					// to the parent primitives list.
					const parentLineSegments = info.lineSegments;
					const parentConditionalSegments = info.conditionalSegments;
					const parentFaces = info.faces;

					const lineSegments = subobjectInfo.lineSegments;
					const conditionalSegments = subobjectInfo.conditionalSegments;

					const faces = subobjectInfo.faces;
					const matrix = subobject.matrix;
					const inverted = subobject.inverted;
					const matrixScaleInverted = matrix.determinant() < 0;
					const colorCode = subobject.colorCode;

					const lineColorCode = colorCode === MAIN_COLOUR_CODE ? MAIN_EDGE_COLOUR_CODE : colorCode;
					for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {

						const ls = lineSegments[ i ];
						const vertices = ls.vertices;
						vertices[ 0 ].applyMatrix4( matrix );
						vertices[ 1 ].applyMatrix4( matrix );
						ls.colorCode = ls.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : ls.colorCode;
						ls.material = ls.material || getMaterialFromCode( ls.colorCode, ls.colorCode, info.materials, true );

						parentLineSegments.push( ls );

					}

					for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) {

						const os = conditionalSegments[ i ];
						const vertices = os.vertices;
						const controlPoints = os.controlPoints;
						vertices[ 0 ].applyMatrix4( matrix );
						vertices[ 1 ].applyMatrix4( matrix );
						controlPoints[ 0 ].applyMatrix4( matrix );
						controlPoints[ 1 ].applyMatrix4( matrix );
						os.colorCode = os.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : os.colorCode;
						os.material = os.material || getMaterialFromCode( os.colorCode, os.colorCode, info.materials, true );

						parentConditionalSegments.push( os );

					}

					for ( let i = 0, l = faces.length; i < l; i ++ ) {

						const tri = faces[ i ];
						const vertices = tri.vertices;
						for ( let i = 0, l = vertices.length; i < l; i ++ ) {

							vertices[ i ].applyMatrix4( matrix );

						}

						tri.colorCode = tri.colorCode === MAIN_COLOUR_CODE ? colorCode : tri.colorCode;
						tri.material = tri.material || getMaterialFromCode( tri.colorCode, colorCode, info.materials, false );
						faceMaterials.add( tri.colorCode );

						// If the scale of the object is negated then the triangle winding order
						// needs to be flipped.
						if ( matrixScaleInverted !== inverted ) {

							vertices.reverse();

						}

						parentFaces.push( tri );

					}

					info.totalFaces += subobjectInfo.totalFaces;

				}

				// Apply the parent subobjects pass through material code to this object. This is done several times due
				// to material scoping.
				if ( subobject ) {

					loader.applyMaterialsToMesh( group, subobject.colorCode, info.materials );
					group.userData.colorCode = subobject.colorCode;

				}

				return info;

			};

			// Track material use to see if we need to use the normal smooth slow path for hard edges.
			for ( let i = 0, l = info.faces; i < l; i ++ ) {

				faceMaterials.add( info.faces[ i ].colorCode );

			}

			await processInfoSubobjects( info );

			if ( loader.smoothNormals ) {

				const checkSubSegments = faceMaterials.size > 1;
				generateFaceNormals( info.faces );
				smoothNormals( info.faces, info.lineSegments, checkSubSegments );

			}

			// Add the primitive objects and metadata.
			const group = info.group;
			if ( info.faces.length > 0 ) {

				group.add( createObject( this.loader, info.faces, 3, false, info.totalFaces ) );

			}

			if ( info.lineSegments.length > 0 ) {

				group.add( createObject( this.loader, info.lineSegments, 2 ) );

			}

			if ( info.conditionalSegments.length > 0 ) {

				group.add( createObject( this.loader, info.conditionalSegments, 2, true ) );

			}

			return group;

		}

		hasCachedModel( fileName ) {

			return fileName !== null && fileName.toLowerCase() in this._cache;

		}

		async getCachedModel( fileName ) {

			if ( fileName !== null && this.hasCachedModel( fileName ) ) {

				const key = fileName.toLowerCase();
				const group = await this._cache[ key ];
				return group.clone();

			} else {

				return null;

			}

		}

		// Loads and parses the model with the given file name. Returns a cached copy if available.
		async loadModel( fileName ) {

			const parseCache = this.parseCache;
			const key = fileName.toLowerCase();
			if ( this.hasCachedModel( fileName ) ) {

				// Return cached model if available.
				return this.getCachedModel( fileName );

			} else {

				// Otherwise parse a new model.
				// Ensure the file data is loaded and pre parsed.
				await parseCache.ensureDataLoaded( fileName );

				const info = parseCache.getData( fileName );
				const promise = this.processIntoMesh( info );

				// Now that the file has loaded it's possible that another part parse has been waiting in parallel
				// so check the cache again to see if it's been added since the last async operation so we don't
				// do unnecessary work.
				if ( this.hasCachedModel( fileName ) ) {

					return this.getCachedModel( fileName );

				}

				// Cache object if it's a part so it can be reused later.
				if ( isPartType( info.type ) ) {

					this._cache[ key ] = promise;

				}

				// return a copy
				const group = await promise;
				return group.clone();

			}

		}

		// parses the given model text into a renderable object. Returns cached copy if available.
		async parseModel( text ) {

			const parseCache = this.parseCache;
			const info = parseCache.parse( text );
			if ( isPartType( info.type ) && this.hasCachedModel( info.fileName ) ) {

				return this.getCachedModel( info.fileName );

			}

			return this.processIntoMesh( info );

		}

	}

	function sortByMaterial( a, b ) {

		if ( a.colorCode === b.colorCode ) {

			return 0;

		}

		if ( a.colorCode < b.colorCode ) {

			return - 1;

		}

		return 1;

	}

	function createObject( loader, elements, elementSize, isConditionalSegments = false, totalElements = null ) {

		// Creates a LineSegments (elementSize = 2) or a Mesh (elementSize = 3 )
		// With per face / segment material, implemented with mesh groups and materials array

		// Sort the faces or line segments by color code to make later the mesh groups
		elements.sort( sortByMaterial );

		if ( totalElements === null ) {

			totalElements = elements.length;

		}

		const positions = new Float32Array( elementSize * totalElements * 3 );
		const normals = elementSize === 3 ? new Float32Array( elementSize * totalElements * 3 ) : null;
		const materials = [];

		const quadArray = new Array( 6 );
		const bufferGeometry = new BufferGeometry();
		let prevMaterial = null;
		let index0 = 0;
		let numGroupVerts = 0;
		let offset = 0;

		for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) {

			const elem = elements[ iElem ];
			let vertices = elem.vertices;
			if ( vertices.length === 4 ) {

				quadArray[ 0 ] = vertices[ 0 ];
				quadArray[ 1 ] = vertices[ 1 ];
				quadArray[ 2 ] = vertices[ 2 ];
				quadArray[ 3 ] = vertices[ 0 ];
				quadArray[ 4 ] = vertices[ 2 ];
				quadArray[ 5 ] = vertices[ 3 ];
				vertices = quadArray;

			}

			for ( let j = 0, l = vertices.length; j < l; j ++ ) {

				const v = vertices[ j ];
				const index = offset + j * 3;
				positions[ index + 0 ] = v.x;
				positions[ index + 1 ] = v.y;
				positions[ index + 2 ] = v.z;

			}

			// create the normals array if this is a set of faces
			if ( elementSize === 3 ) {

				if ( ! elem.faceNormal ) {

					const v0 = vertices[ 0 ];
					const v1 = vertices[ 1 ];
					const v2 = vertices[ 2 ];
					_tempVec0.subVectors( v1, v0 );
					_tempVec1.subVectors( v2, v1 );
					elem.faceNormal = new Vector3()
						.crossVectors( _tempVec0, _tempVec1 )
						.normalize();

				}

				let elemNormals = elem.normals;
				if ( elemNormals.length === 4 ) {

					quadArray[ 0 ] = elemNormals[ 0 ];
					quadArray[ 1 ] = elemNormals[ 1 ];
					quadArray[ 2 ] = elemNormals[ 2 ];
					quadArray[ 3 ] = elemNormals[ 0 ];
					quadArray[ 4 ] = elemNormals[ 2 ];
					quadArray[ 5 ] = elemNormals[ 3 ];
					elemNormals = quadArray;

				}

				for ( let j = 0, l = elemNormals.length; j < l; j ++ ) {

					// use face normal if a vertex normal is not provided
					let n = elem.faceNormal;
					if ( elemNormals[ j ] ) {

						n = elemNormals[ j ].norm;

					}

					const index = offset + j * 3;
					normals[ index + 0 ] = n.x;
					normals[ index + 1 ] = n.y;
					normals[ index + 2 ] = n.z;

				}

			}

			if ( prevMaterial !== elem.colorCode ) {

				if ( prevMaterial !== null ) {

					bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 );

				}

				const material = elem.material;

				if ( material !== null ) {

					if ( elementSize === 3 ) {

						materials.push( material );

					} else if ( elementSize === 2 ) {

						if ( isConditionalSegments ) {

							const edgeMaterial = loader.edgeMaterialCache.get( material );

							materials.push( loader.conditionalEdgeMaterialCache.get( edgeMaterial ) );

						} else {

							materials.push( loader.edgeMaterialCache.get( material ) );

						}

					}

				} else {

					// If a material has not been made available yet then keep the color code string in the material array
					// to save the spot for the material once a parent scopes materials are being applied to the object.
					materials.push( elem.colorCode );

				}

				prevMaterial = elem.colorCode;
				index0 = offset / 3;
				numGroupVerts = vertices.length;

			} else {

				numGroupVerts += vertices.length;

			}

			offset += 3 * vertices.length;

		}

		if ( numGroupVerts > 0 ) {

			bufferGeometry.addGroup( index0, Infinity, materials.length - 1 );

		}

		bufferGeometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );

		if ( normals !== null ) {

			bufferGeometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

		}

		let object3d = null;

		if ( elementSize === 2 ) {

			if ( isConditionalSegments ) {

				object3d = new ConditionalLineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );

			} else {

				object3d = new LineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );

			}

		} else if ( elementSize === 3 ) {

			object3d = new Mesh( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );

		}

		if ( isConditionalSegments ) {

			object3d.isConditionalLine = true;

			const controlArray0 = new Float32Array( elements.length * 3 * 2 );
			const controlArray1 = new Float32Array( elements.length * 3 * 2 );
			const directionArray = new Float32Array( elements.length * 3 * 2 );
			for ( let i = 0, l = elements.length; i < l; i ++ ) {

				const os = elements[ i ];
				const vertices = os.vertices;
				const controlPoints = os.controlPoints;
				const c0 = controlPoints[ 0 ];
				const c1 = controlPoints[ 1 ];
				const v0 = vertices[ 0 ];
				const v1 = vertices[ 1 ];
				const index = i * 3 * 2;
				controlArray0[ index + 0 ] = c0.x;
				controlArray0[ index + 1 ] = c0.y;
				controlArray0[ index + 2 ] = c0.z;
				controlArray0[ index + 3 ] = c0.x;
				controlArray0[ index + 4 ] = c0.y;
				controlArray0[ index + 5 ] = c0.z;

				controlArray1[ index + 0 ] = c1.x;
				controlArray1[ index + 1 ] = c1.y;
				controlArray1[ index + 2 ] = c1.z;
				controlArray1[ index + 3 ] = c1.x;
				controlArray1[ index + 4 ] = c1.y;
				controlArray1[ index + 5 ] = c1.z;

				directionArray[ index + 0 ] = v1.x - v0.x;
				directionArray[ index + 1 ] = v1.y - v0.y;
				directionArray[ index + 2 ] = v1.z - v0.z;
				directionArray[ index + 3 ] = v1.x - v0.x;
				directionArray[ index + 4 ] = v1.y - v0.y;
				directionArray[ index + 5 ] = v1.z - v0.z;

			}

			bufferGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) );
			bufferGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) );
			bufferGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) );

		}

		return object3d;

	}

	//

	class LDrawLoader extends Loader {

		constructor( manager ) {

			super( manager );

			// Array of THREE.Material
			this.materials = [];
			this.materialLibrary = {};
			this.edgeMaterialCache = new WeakMap();
			this.conditionalEdgeMaterialCache = new WeakMap();

			// This also allows to handle the embedded text files ("0 FILE" lines)
			this.partsCache = new LDrawPartsGeometryCache( this );

			// This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error.
			this.fileMap = {};

			// Initializes the materials library with default materials
			this.setMaterials( [] );

			// If this flag is set to true the vertex normals will be smoothed.
			this.smoothNormals = true;

			// The path to load parts from the LDraw parts library from.
			this.partsLibraryPath = '';

			// Material assigned to not available colors for meshes and edges
			this.missingColorMaterial = new MeshStandardMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xFF00FF, roughness: 0.3, metalness: 0 } );
			this.missingEdgeColorMaterial = new LineBasicMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xFF00FF } );
			this.missingConditionalEdgeColorMaterial = new LDrawConditionalLineMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, fog: true, color: 0xFF00FF } );
			this.edgeMaterialCache.set( this.missingColorMaterial, this.missingEdgeColorMaterial );
			this.conditionalEdgeMaterialCache.set( this.missingEdgeColorMaterial, this.missingConditionalEdgeColorMaterial );

		}

		setPartsLibraryPath( path ) {

			this.partsLibraryPath = path;
			return this;

		}

		async preloadMaterials( url ) {

			const fileLoader = new FileLoader( this.manager );
			fileLoader.setPath( this.path );
			fileLoader.setRequestHeader( this.requestHeader );
			fileLoader.setWithCredentials( this.withCredentials );

			const text = await fileLoader.loadAsync( url );
			const colorLineRegex = /^0 !COLOUR/;
			const lines = text.split( /[\n\r]/g );
			const materials = [];
			for ( let i = 0, l = lines.length; i < l; i ++ ) {

				const line = lines[ i ];
				if ( colorLineRegex.test( line ) ) {

					const directive = line.replace( colorLineRegex, '' );
					const material = this.parseColorMetaDirective( new LineParser( directive ) );
					materials.push( material );

				}

			}

			this.setMaterials( materials );

		}

		load( url, onLoad, onProgress, onError ) {

			const fileLoader = new FileLoader( this.manager );
			fileLoader.setPath( this.path );
			fileLoader.setRequestHeader( this.requestHeader );
			fileLoader.setWithCredentials( this.withCredentials );
			fileLoader.load( url, text => {

				this.partsCache
					.parseModel( text, this.materialLibrary )
					.then( group => {

						this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true );
						this.computeBuildingSteps( group );
						group.userData.fileName = url;
						onLoad( group );

					} )
					.catch( onError );

			}, onProgress, onError );

		}

		parse( text, onLoad ) {

			this.partsCache
				.parseModel( text, this.materialLibrary )
				.then( group => {

					this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true );
					this.computeBuildingSteps( group );
					group.userData.fileName = '';
					onLoad( group );

				} );

		}

		setMaterials( materials ) {

			this.materialLibrary = {};
			this.materials = [];
			for ( let i = 0, l = materials.length; i < l; i ++ ) {

				this.addMaterial( materials[ i ] );

			}

			// Add default main triangle and line edge materials (used in pieces that can be colored with a main color)
			this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ) );
			this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) ) );

			return this;

		}

		setFileMap( fileMap ) {

			this.fileMap = fileMap;

			return this;

		}

		addMaterial( material ) {

			// Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array

			const matLib = this.materialLibrary;
			if ( ! matLib[ material.userData.code ] ) {

				this.materials.push( material );
				matLib[ material.userData.code ] = material;

			}

			return this;

		}

		getMaterial( colorCode ) {

			if ( colorCode.startsWith( '0x2' ) ) {

				// Special 'direct' material value (RGB color)
				const color = colorCode.substring( 3 );

				return this.parseColorMetaDirective( new LineParser( 'Direct_Color_' + color + ' CODE -1 VALUE #' + color + ' EDGE #' + color + '' ) );

			}

			return this.materialLibrary[ colorCode ] || null;

		}

		// Applies the appropriate materials to a prebuilt hierarchy of geometry. Assumes that color codes are present
		// in the material array if they need to be filled in.
		applyMaterialsToMesh( group, parentColorCode, materialHierarchy, finalMaterialPass = false ) {

			// find any missing materials as indicated by a color code string and replace it with a material from the current material lib
			const loader = this;
			const parentIsPassthrough = parentColorCode === MAIN_COLOUR_CODE;
			group.traverse( c => {

				if ( c.isMesh || c.isLineSegments ) {

					if ( Array.isArray( c.material ) ) {

						for ( let i = 0, l = c.material.length; i < l; i ++ ) {

							if ( ! c.material[ i ].isMaterial ) {

								c.material[ i ] = getMaterial( c, c.material[ i ] );

							}

						}

					} else if ( ! c.material.isMaterial ) {

						c.material = getMaterial( c, c.material );

					}

				}

			} );


			// Returns the appropriate material for the object (line or face) given color code. If the code is "pass through"
			// (24 for lines, 16 for edges) then the pass through color code is used. If that is also pass through then it's
			// simply returned for the subsequent material application.
			function getMaterial( c, colorCode ) {

				// if our parent is a passthrough color code and we don't have the current material color available then
				// return early.
				if ( parentIsPassthrough && ! ( colorCode in materialHierarchy ) && ! finalMaterialPass ) {

					return colorCode;

				}

				const forEdge = c.isLineSegments || c.isConditionalLine;
				const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE;
				if ( isPassthrough ) {

					colorCode = parentColorCode;

				}

				let material = null;
				if ( colorCode in materialHierarchy ) {

					material = materialHierarchy[ colorCode ];

				} else if ( finalMaterialPass ) {

					// see if we can get the final material from from the "getMaterial" function which will attempt to
					// parse the "direct" colors
					material = loader.getMaterial( colorCode );
					if ( material === null ) {

						// otherwise throw a warning if this is final opportunity to set the material
						console.warn( `LDrawLoader: Material properties for code ${ colorCode } not available.` );

						// And return the 'missing color' material
						material = loader.missingColorMaterial;

					}


				} else {

					return colorCode;

				}

				if ( c.isLineSegments ) {

					material = loader.edgeMaterialCache.get( material );

					if ( c.isConditionalLine ) {

						material = loader.conditionalEdgeMaterialCache.get( material );

					}

				}

				return material;

			}

		}

		getMainMaterial() {

			return this.getMaterial( MAIN_COLOUR_CODE );

		}

		getMainEdgeMaterial() {

			const mat = this.getMaterial( MAIN_EDGE_COLOUR_CODE );
			return mat ? this.edgeMaterialCache.get( mat ) : null;

		}

		parseColorMetaDirective( lineParser ) {

			// Parses a color definition and returns a THREE.Material

			let code = null;

			// Triangle and line colors
			let fillColor = '#FF00FF';
			let edgeColor = '#FF00FF';

			// Transparency
			let alpha = 1;
			let isTransparent = false;
			// Self-illumination:
			let luminance = 0;

			let finishType = FINISH_TYPE_DEFAULT;

			let edgeMaterial = null;

			const name = lineParser.getToken();
			if ( ! name ) {

				throw new Error( 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.' );

			}

			// Parse tag tokens and their parameters
			let token = null;
			while ( true ) {

				token = lineParser.getToken();

				if ( ! token ) {

					break;

				}

				if ( ! parseLuminance( token ) ) {

					switch ( token.toUpperCase() ) {

						case 'CODE':

							code = lineParser.getToken();
							break;

						case 'VALUE':

							fillColor = lineParser.getToken();
							if ( fillColor.startsWith( '0x' ) ) {

								fillColor = '#' + fillColor.substring( 2 );

							} else if ( ! fillColor.startsWith( '#' ) ) {

								throw new Error( 'LDrawLoader: Invalid color while parsing material' + lineParser.getLineNumberString() + '.' );

							}

							break;

						case 'EDGE':

							edgeColor = lineParser.getToken();
							if ( edgeColor.startsWith( '0x' ) ) {

								edgeColor = '#' + edgeColor.substring( 2 );

							} else if ( ! edgeColor.startsWith( '#' ) ) {

								// Try to see if edge color is a color code
								edgeMaterial = this.getMaterial( edgeColor );
								if ( ! edgeMaterial ) {

									throw new Error( 'LDrawLoader: Invalid edge color while parsing material' + lineParser.getLineNumberString() + '.' );

								}

								// Get the edge material for this triangle material
								edgeMaterial = this.edgeMaterialCache.get( edgeMaterial );

							}

							break;

						case 'ALPHA':

							alpha = parseInt( lineParser.getToken() );

							if ( isNaN( alpha ) ) {

								throw new Error( 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.' );

							}

							alpha = Math.max( 0, Math.min( 1, alpha / 255 ) );

							if ( alpha < 1 ) {

								isTransparent = true;

							}

							break;

						case 'LUMINANCE':

							if ( ! parseLuminance( lineParser.getToken() ) ) {

								throw new Error( 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.' );

							}

							break;

						case 'CHROME':
							finishType = FINISH_TYPE_CHROME;
							break;

						case 'PEARLESCENT':
							finishType = FINISH_TYPE_PEARLESCENT;
							break;

						case 'RUBBER':
							finishType = FINISH_TYPE_RUBBER;
							break;

						case 'MATTE_METALLIC':
							finishType = FINISH_TYPE_MATTE_METALLIC;
							break;

						case 'METAL':
							finishType = FINISH_TYPE_METAL;
							break;

						case 'MATERIAL':
							// Not implemented
							lineParser.setToEnd();
							break;

						default:
							throw new Error( 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.' );

					}

				}

			}

			let material = null;

			switch ( finishType ) {

				case FINISH_TYPE_DEFAULT:

					material = new MeshStandardMaterial( { roughness: 0.3, metalness: 0 } );
					break;

				case FINISH_TYPE_PEARLESCENT:

					// Try to imitate pearlescency by making the surface glossy
					material = new MeshStandardMaterial( { roughness: 0.3, metalness: 0.25 } );
					break;

				case FINISH_TYPE_CHROME:

					// Mirror finish surface
					material = new MeshStandardMaterial( { roughness: 0, metalness: 1 } );
					break;

				case FINISH_TYPE_RUBBER:

					// Rubber finish
					material = new MeshStandardMaterial( { roughness: 0.9, metalness: 0 } );
					break;

				case FINISH_TYPE_MATTE_METALLIC:

					// Brushed metal finish
					material = new MeshStandardMaterial( { roughness: 0.8, metalness: 0.4 } );
					break;

				case FINISH_TYPE_METAL:

					// Average metal finish
					material = new MeshStandardMaterial( { roughness: 0.2, metalness: 0.85 } );
					break;

				default:
					// Should not happen
					break;

			}

			material.color.setStyle( fillColor, COLOR_SPACE_LDRAW );
			material.transparent = isTransparent;
			material.premultipliedAlpha = true;
			material.opacity = alpha;
			material.depthWrite = ! isTransparent;

			material.polygonOffset = true;
			material.polygonOffsetFactor = 1;

			if ( luminance !== 0 ) {

				material.emissive.setStyle( fillColor, COLOR_SPACE_LDRAW ).multiplyScalar( luminance );

			}

			if ( ! edgeMaterial ) {

				// This is the material used for edges
				edgeMaterial = new LineBasicMaterial( {
					color: new Color().setStyle( edgeColor, COLOR_SPACE_LDRAW ),
					transparent: isTransparent,
					opacity: alpha,
					depthWrite: ! isTransparent
				} );
				edgeMaterial.color;
				edgeMaterial.userData.code = code;
				edgeMaterial.name = name + ' - Edge';

				// This is the material used for conditional edges
				const conditionalEdgeMaterial = new LDrawConditionalLineMaterial( {

					fog: true,
					transparent: isTransparent,
					depthWrite: ! isTransparent,
					color: new Color().setStyle( edgeColor, COLOR_SPACE_LDRAW ),
					opacity: alpha,

				} );
				conditionalEdgeMaterial.userData.code = code;
				conditionalEdgeMaterial.name = name + ' - Conditional Edge';

				this.conditionalEdgeMaterialCache.set( edgeMaterial, conditionalEdgeMaterial );

			}

			material.userData.code = code;
			material.name = name;

			this.edgeMaterialCache.set( material, edgeMaterial );

			this.addMaterial( material );

			return material;

			function parseLuminance( token ) {

				// Returns success

				let lum;

				if ( token.startsWith( 'LUMINANCE' ) ) {

					lum = parseInt( token.substring( 9 ) );

				} else {

					lum = parseInt( token );

				}

				if ( isNaN( lum ) ) {

					return false;

				}

				luminance = Math.max( 0, Math.min( 1, lum / 255 ) );

				return true;

			}

		}

		computeBuildingSteps( model ) {

			// Sets userdata.buildingStep number in Group objects and userData.numBuildingSteps number in the root Group object.

			let stepNumber = 0;

			model.traverse( c => {

				if ( c.isGroup ) {

					if ( c.userData.startingBuildingStep ) {

						stepNumber ++;

					}

					c.userData.buildingStep = stepNumber;

				}

			} );

			model.userData.numBuildingSteps = stepNumber + 1;

		}

	}

	//export { LDrawLoader };



	class Reflector extends Mesh {

		constructor( geometry, options = {} ) {

			super( geometry );

			this.isReflector = true;

			this.type = 'Reflector';
			this.camera = new PerspectiveCamera();

			const scope = this;

			const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0x7F7F7F );
			const textureWidth = options.textureWidth || 512;
			const textureHeight = options.textureHeight || 512;
			const clipBias = options.clipBias || 0;
			const shader = options.shader || Reflector.ReflectorShader;
			const multisample = ( options.multisample !== undefined ) ? options.multisample : 4;

			//

			const reflectorPlane = new Plane();
			const normal = new Vector3();
			const reflectorWorldPosition = new Vector3();
			const cameraWorldPosition = new Vector3();
			const rotationMatrix = new Matrix4();
			const lookAtPosition = new Vector3( 0, 0, - 1 );
			const clipPlane = new Vector4();

			const view = new Vector3();
			const target = new Vector3();
			const q = new Vector4();

			const textureMatrix = new Matrix4();
			const virtualCamera = this.camera;

			const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight, { samples: multisample, type: HalfFloatType } );

			const material = new ShaderMaterial( {
				name: ( shader.name !== undefined ) ? shader.name : 'unspecified',
				uniforms: UniformsUtils.clone( shader.uniforms ),
				fragmentShader: shader.fragmentShader,
				vertexShader: shader.vertexShader
			} );

			material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;
			material.uniforms[ 'color' ].value = color;
			material.uniforms[ 'textureMatrix' ].value = textureMatrix;

			this.material = material;

			this.onBeforeRender = function ( renderer, scene, camera ) {

				reflectorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
				cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );

				rotationMatrix.extractRotation( scope.matrixWorld );

				normal.set( 0, 0, 1 );
				normal.applyMatrix4( rotationMatrix );

				view.subVectors( reflectorWorldPosition, cameraWorldPosition );

				// Avoid rendering when reflector is facing away

				if ( view.dot( normal ) > 0 ) return;

				view.reflect( normal ).negate();
				view.add( reflectorWorldPosition );

				rotationMatrix.extractRotation( camera.matrixWorld );

				lookAtPosition.set( 0, 0, - 1 );
				lookAtPosition.applyMatrix4( rotationMatrix );
				lookAtPosition.add( cameraWorldPosition );

				target.subVectors( reflectorWorldPosition, lookAtPosition );
				target.reflect( normal ).negate();
				target.add( reflectorWorldPosition );

				virtualCamera.position.copy( view );
				virtualCamera.up.set( 0, 1, 0 );
				virtualCamera.up.applyMatrix4( rotationMatrix );
				virtualCamera.up.reflect( normal );
				virtualCamera.lookAt( target );

				virtualCamera.far = camera.far; // Used in WebGLBackground

				virtualCamera.updateMatrixWorld();
				virtualCamera.projectionMatrix.copy( camera.projectionMatrix );

				// Update the texture matrix
				textureMatrix.set(
					0.5, 0.0, 0.0, 0.5,
					0.0, 0.5, 0.0, 0.5,
					0.0, 0.0, 0.5, 0.5,
					0.0, 0.0, 0.0, 1.0
				);
				textureMatrix.multiply( virtualCamera.projectionMatrix );
				textureMatrix.multiply( virtualCamera.matrixWorldInverse );
				textureMatrix.multiply( scope.matrixWorld );

				// Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
				// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
				reflectorPlane.setFromNormalAndCoplanarPoint( normal, reflectorWorldPosition );
				reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );

				clipPlane.set( reflectorPlane.normal.x, reflectorPlane.normal.y, reflectorPlane.normal.z, reflectorPlane.constant );

				const projectionMatrix = virtualCamera.projectionMatrix;

				q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
				q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
				q.z = - 1.0;
				q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];

				// Calculate the scaled plane vector
				clipPlane.multiplyScalar( 2.0 / clipPlane.dot( q ) );

				// Replacing the third row of the projection matrix
				projectionMatrix.elements[ 2 ] = clipPlane.x;
				projectionMatrix.elements[ 6 ] = clipPlane.y;
				projectionMatrix.elements[ 10 ] = clipPlane.z + 1.0 - clipBias;
				projectionMatrix.elements[ 14 ] = clipPlane.w;

				// Render
				scope.visible = false;

				const currentRenderTarget = renderer.getRenderTarget();

				const currentXrEnabled = renderer.xr.enabled;
				const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;

				renderer.xr.enabled = false; // Avoid camera modification
				renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows

				renderer.setRenderTarget( renderTarget );

				renderer.state.buffers.depth.setMask( true ); // make sure the depth buffer is writable so it can be properly cleared, see #18897

				if ( renderer.autoClear === false ) renderer.clear();
				renderer.render( scene, virtualCamera );

				renderer.xr.enabled = currentXrEnabled;
				renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;

				renderer.setRenderTarget( currentRenderTarget );

				// Restore viewport

				const viewport = camera.viewport;

				if ( viewport !== undefined ) {

					renderer.state.viewport( viewport );

				}

				scope.visible = true;

			};

			this.getRenderTarget = function () {

				return renderTarget;

			};

			this.dispose = function () {

				renderTarget.dispose();
				scope.material.dispose();

			};

		}

	}

	Reflector.ReflectorShader = {

		name: 'ReflectorShader',

		uniforms: {

			'color': {
				value: null
			},

			'tDiffuse': {
				value: null
			},

			'textureMatrix': {
				value: null
			}

		},

		vertexShader: /* glsl */`
			uniform mat4 textureMatrix;
			varying vec4 vUv;

			#include <common>
			#include <logdepthbuf_pars_vertex>

			void main() {

				vUv = textureMatrix * vec4( position, 1.0 );

				gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );

				#include <logdepthbuf_vertex>

			}`,

		fragmentShader: /* glsl */`
			uniform vec3 color;
			uniform sampler2D tDiffuse;
			varying vec4 vUv;

			#include <logdepthbuf_pars_fragment>

			float blendOverlay( float base, float blend ) {

				return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );

			}

			vec3 blendOverlay( vec3 base, vec3 blend ) {

				return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );

			}

			void main() {

				#include <logdepthbuf_fragment>

				vec4 base = texture2DProj( tDiffuse, vUv );
				gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );

				#include <tonemapping_fragment>
				#include <colorspace_fragment>

			}`
	};

	//export { Reflector };



	function computeMikkTSpaceTangents( geometry, MikkTSpace, negateSign = true ) {

		if ( ! MikkTSpace || ! MikkTSpace.isReady ) {

			throw new Error( 'BufferGeometryUtils: Initialized MikkTSpace library required.' );

		}

		if ( ! geometry.hasAttribute( 'position' ) || ! geometry.hasAttribute( 'normal' ) || ! geometry.hasAttribute( 'uv' ) ) {

			throw new Error( 'BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.' );

		}

		function getAttributeArray( attribute ) {

			if ( attribute.normalized || attribute.isInterleavedBufferAttribute ) {

				const dstArray = new Float32Array( attribute.count * attribute.itemSize );

				for ( let i = 0, j = 0; i < attribute.count; i ++ ) {

					dstArray[ j ++ ] = attribute.getX( i );
					dstArray[ j ++ ] = attribute.getY( i );

					if ( attribute.itemSize > 2 ) {

						dstArray[ j ++ ] = attribute.getZ( i );

					}

				}

				return dstArray;

			}

			if ( attribute.array instanceof Float32Array ) {

				return attribute.array;

			}

			return new Float32Array( attribute.array );

		}

		// MikkTSpace algorithm requires non-indexed input.

		const _geometry = geometry.index ? geometry.toNonIndexed() : geometry;

		// Compute vertex tangents.

		const tangents = MikkTSpace.generateTangents(

			getAttributeArray( _geometry.attributes.position ),
			getAttributeArray( _geometry.attributes.normal ),
			getAttributeArray( _geometry.attributes.uv )

		);

		// Texture coordinate convention of glTF differs from the apparent
		// default of the MikkTSpace library; .w component must be flipped.

		if ( negateSign ) {

			for ( let i = 3; i < tangents.length; i += 4 ) {

				tangents[ i ] *= - 1;

			}

		}

		//

		_geometry.setAttribute( 'tangent', new BufferAttribute( tangents, 4 ) );

		if ( geometry !== _geometry ) {

			geometry.copy( _geometry );

		}

		return geometry;

	}

	/**
	 * @param  {Array<BufferGeometry>} geometries
	 * @param  {Boolean} useGroups
	 * @return {BufferGeometry}
	 */
	function mergeGeometries( geometries, useGroups = false ) {

		const isIndexed = geometries[ 0 ].index !== null;

		const attributesUsed = new Set( Object.keys( geometries[ 0 ].attributes ) );
		const morphAttributesUsed = new Set( Object.keys( geometries[ 0 ].morphAttributes ) );

		const attributes = {};
		const morphAttributes = {};

		const morphTargetsRelative = geometries[ 0 ].morphTargetsRelative;

		const mergedGeometry = new BufferGeometry();

		let offset = 0;

		for ( let i = 0; i < geometries.length; ++ i ) {

			const geometry = geometries[ i ];
			let attributesCount = 0;

			// ensure that all geometries are indexed, or none

			if ( isIndexed !== ( geometry.index !== null ) ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.' );
				return null;

			}

			// gather attributes, exit early if they're different

			for ( const name in geometry.attributes ) {

				if ( ! attributesUsed.has( name ) ) {

					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.' );
					return null;

				}

				if ( attributes[ name ] === undefined ) attributes[ name ] = [];

				attributes[ name ].push( geometry.attributes[ name ] );

				attributesCount ++;

			}

			// ensure geometries have the same number of attributes

			if ( attributesCount !== attributesUsed.size ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. Make sure all geometries have the same number of attributes.' );
				return null;

			}

			// gather morph attributes, exit early if they're different

			if ( morphTargetsRelative !== geometry.morphTargetsRelative ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. .morphTargetsRelative must be consistent throughout all geometries.' );
				return null;

			}

			for ( const name in geometry.morphAttributes ) {

				if ( ! morphAttributesUsed.has( name ) ) {

					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '.  .morphAttributes must be consistent throughout all geometries.' );
					return null;

				}

				if ( morphAttributes[ name ] === undefined ) morphAttributes[ name ] = [];

				morphAttributes[ name ].push( geometry.morphAttributes[ name ] );

			}

			if ( useGroups ) {

				let count;

				if ( isIndexed ) {

					count = geometry.index.count;

				} else if ( geometry.attributes.position !== undefined ) {

					count = geometry.attributes.position.count;

				} else {

					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. The geometry must have either an index or a position attribute' );
					return null;

				}

				mergedGeometry.addGroup( offset, count, i );

				offset += count;

			}

		}

		// merge indices

		if ( isIndexed ) {

			let indexOffset = 0;
			const mergedIndex = [];

			for ( let i = 0; i < geometries.length; ++ i ) {

				const index = geometries[ i ].index;

				for ( let j = 0; j < index.count; ++ j ) {

					mergedIndex.push( index.getX( j ) + indexOffset );

				}

				indexOffset += geometries[ i ].attributes.position.count;

			}

			mergedGeometry.setIndex( mergedIndex );

		}

		// merge attributes

		for ( const name in attributes ) {

			const mergedAttribute = mergeAttributes( attributes[ name ] );

			if ( ! mergedAttribute ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' attribute.' );
				return null;

			}

			mergedGeometry.setAttribute( name, mergedAttribute );

		}

		// merge morph attributes

		for ( const name in morphAttributes ) {

			const numMorphTargets = morphAttributes[ name ][ 0 ].length;

			if ( numMorphTargets === 0 ) break;

			mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {};
			mergedGeometry.morphAttributes[ name ] = [];

			for ( let i = 0; i < numMorphTargets; ++ i ) {

				const morphAttributesToMerge = [];

				for ( let j = 0; j < morphAttributes[ name ].length; ++ j ) {

					morphAttributesToMerge.push( morphAttributes[ name ][ j ][ i ] );

				}

				const mergedMorphAttribute = mergeAttributes( morphAttributesToMerge );

				if ( ! mergedMorphAttribute ) {

					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' morphAttribute.' );
					return null;

				}

				mergedGeometry.morphAttributes[ name ].push( mergedMorphAttribute );

			}

		}

		return mergedGeometry;

	}

	/**
	 * @param {Array<BufferAttribute>} attributes
	 * @return {BufferAttribute}
	 */
	function mergeAttributes( attributes ) {

		let TypedArray;
		let itemSize;
		let normalized;
		let gpuType = - 1;
		let arrayLength = 0;

		for ( let i = 0; i < attributes.length; ++ i ) {

			const attribute = attributes[ i ];

			if ( TypedArray === undefined ) TypedArray = attribute.array.constructor;
			if ( TypedArray !== attribute.array.constructor ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes.' );
				return null;

			}

			if ( itemSize === undefined ) itemSize = attribute.itemSize;
			if ( itemSize !== attribute.itemSize ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes.' );
				return null;

			}

			if ( normalized === undefined ) normalized = attribute.normalized;
			if ( normalized !== attribute.normalized ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes.' );
				return null;

			}

			if ( gpuType === - 1 ) gpuType = attribute.gpuType;
			if ( gpuType !== attribute.gpuType ) {

				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes.' );
				return null;

			}

			arrayLength += attribute.count * itemSize;

		}

		const array = new TypedArray( arrayLength );
		const result = new BufferAttribute( array, itemSize, normalized );
		let offset = 0;

		for ( let i = 0; i < attributes.length; ++ i ) {

			const attribute = attributes[ i ];
			if ( attribute.isInterleavedBufferAttribute ) {

				const tupleOffset = offset / itemSize;
				for ( let j = 0, l = attribute.count; j < l; j ++ ) {

					for ( let c = 0; c < itemSize; c ++ ) {

						const value = attribute.getComponent( j, c );
						result.setComponent( j + tupleOffset, c, value );

					}

				}

			} else {

				array.set( attribute.array, offset );

			}

			offset += attribute.count * itemSize;

		}

		if ( gpuType !== undefined ) {

			result.gpuType = gpuType;

		}

		return result;

	}

	/**
	 * @param {BufferAttribute}
	 * @return {BufferAttribute}
	 */
	export function deepCloneAttribute( attribute ) {

		if ( attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute ) {

			return deinterleaveAttribute( attribute );

		}

		if ( attribute.isInstancedBufferAttribute ) {

			return new InstancedBufferAttribute().copy( attribute );

		}

		return new BufferAttribute().copy( attribute );

	}

	/**
	 * @param {Array<BufferAttribute>} attributes
	 * @return {Array<InterleavedBufferAttribute>}
	 */
	function interleaveAttributes( attributes ) {

		// Interleaves the provided attributes into an InterleavedBuffer and returns
		// a set of InterleavedBufferAttributes for each attribute
		let TypedArray;
		let arrayLength = 0;
		let stride = 0;

		// calculate the length and type of the interleavedBuffer
		for ( let i = 0, l = attributes.length; i < l; ++ i ) {

			const attribute = attributes[ i ];

			if ( TypedArray === undefined ) TypedArray = attribute.array.constructor;
			if ( TypedArray !== attribute.array.constructor ) {

				console.error( 'AttributeBuffers of different types cannot be interleaved' );
				return null;

			}

			arrayLength += attribute.array.length;
			stride += attribute.itemSize;

		}

		// Create the set of buffer attributes
		const interleavedBuffer = new InterleavedBuffer( new TypedArray( arrayLength ), stride );
		let offset = 0;
		const res = [];
		const getters = [ 'getX', 'getY', 'getZ', 'getW' ];
		const setters = [ 'setX', 'setY', 'setZ', 'setW' ];

		for ( let j = 0, l = attributes.length; j < l; j ++ ) {

			const attribute = attributes[ j ];
			const itemSize = attribute.itemSize;
			const count = attribute.count;
			const iba = new InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, attribute.normalized );
			res.push( iba );

			offset += itemSize;

			// Move the data for each attribute into the new interleavedBuffer
			// at the appropriate offset
			for ( let c = 0; c < count; c ++ ) {

				for ( let k = 0; k < itemSize; k ++ ) {

					iba[ setters[ k ] ]( c, attribute[ getters[ k ] ]( c ) );

				}

			}

		}

		return res;

	}

	// returns a new, non-interleaved version of the provided attribute
	export function deinterleaveAttribute( attribute ) {

		const cons = attribute.data.array.constructor;
		const count = attribute.count;
		const itemSize = attribute.itemSize;
		const normalized = attribute.normalized;

		const array = new cons( count * itemSize );
		let newAttribute;
		if ( attribute.isInstancedInterleavedBufferAttribute ) {

			newAttribute = new InstancedBufferAttribute( array, itemSize, normalized, attribute.meshPerAttribute );

		} else {

			newAttribute = new BufferAttribute( array, itemSize, normalized );

		}

		for ( let i = 0; i < count; i ++ ) {

			newAttribute.setX( i, attribute.getX( i ) );

			if ( itemSize >= 2 ) {

				newAttribute.setY( i, attribute.getY( i ) );

			}

			if ( itemSize >= 3 ) {

				newAttribute.setZ( i, attribute.getZ( i ) );

			}

			if ( itemSize >= 4 ) {

				newAttribute.setW( i, attribute.getW( i ) );

			}

		}

		return newAttribute;

	}

	// deinterleaves all attributes on the geometry
	export function deinterleaveGeometry( geometry ) {

		const attributes = geometry.attributes;
		const morphTargets = geometry.morphTargets;
		const attrMap = new Map();

		for ( const key in attributes ) {

			const attr = attributes[ key ];
			if ( attr.isInterleavedBufferAttribute ) {

				if ( ! attrMap.has( attr ) ) {

					attrMap.set( attr, deinterleaveAttribute( attr ) );

				}

				attributes[ key ] = attrMap.get( attr );

			}

		}

		for ( const key in morphTargets ) {

			const attr = morphTargets[ key ];
			if ( attr.isInterleavedBufferAttribute ) {

				if ( ! attrMap.has( attr ) ) {

					attrMap.set( attr, deinterleaveAttribute( attr ) );

				}

				morphTargets[ key ] = attrMap.get( attr );

			}

		}

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @return {number}
	 */
	function estimateBytesUsed( geometry ) {

		// Return the estimated memory used by this geometry in bytes
		// Calculate using itemSize, count, and BYTES_PER_ELEMENT to account
		// for InterleavedBufferAttributes.
		let mem = 0;
		for ( const name in geometry.attributes ) {

			const attr = geometry.getAttribute( name );
			mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT;

		}

		const indices = geometry.getIndex();
		mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0;
		return mem;

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @param {number} tolerance
	 * @return {BufferGeometry}
	 */
	function mergeVertices( geometry, tolerance = 1e-4 ) {

		tolerance = Math.max( tolerance, Number.EPSILON );

		// Generate an index buffer if the geometry doesn't have one, or optimize it
		// if it's already available.
		const hashToIndex = {};
		const indices = geometry.getIndex();
		const positions = geometry.getAttribute( 'position' );
		const vertexCount = indices ? indices.count : positions.count;

		// next value for triangle indices
		let nextIndex = 0;

		// attributes and new attribute arrays
		const attributeNames = Object.keys( geometry.attributes );
		const tmpAttributes = {};
		const tmpMorphAttributes = {};
		const newIndices = [];
		const getters = [ 'getX', 'getY', 'getZ', 'getW' ];
		const setters = [ 'setX', 'setY', 'setZ', 'setW' ];

		// Initialize the arrays, allocating space conservatively. Extra
		// space will be trimmed in the last step.
		for ( let i = 0, l = attributeNames.length; i < l; i ++ ) {

			const name = attributeNames[ i ];
			const attr = geometry.attributes[ name ];

			tmpAttributes[ name ] = new BufferAttribute(
				new attr.array.constructor( attr.count * attr.itemSize ),
				attr.itemSize,
				attr.normalized
			);

			const morphAttr = geometry.morphAttributes[ name ];
			if ( morphAttr ) {

				tmpMorphAttributes[ name ] = new BufferAttribute(
					new morphAttr.array.constructor( morphAttr.count * morphAttr.itemSize ),
					morphAttr.itemSize,
					morphAttr.normalized
				);

			}

		}

		// convert the error tolerance to an amount of decimal places to truncate to
		const halfTolerance = tolerance * 0.5;
		const exponent = Math.log10( 1 / tolerance );
		const hashMultiplier = Math.pow( 10, exponent );
		const hashAdditive = halfTolerance * hashMultiplier;
		for ( let i = 0; i < vertexCount; i ++ ) {

			const index = indices ? indices.getX( i ) : i;

			// Generate a hash for the vertex attributes at the current index 'i'
			let hash = '';
			for ( let j = 0, l = attributeNames.length; j < l; j ++ ) {

				const name = attributeNames[ j ];
				const attribute = geometry.getAttribute( name );
				const itemSize = attribute.itemSize;

				for ( let k = 0; k < itemSize; k ++ ) {

					// double tilde truncates the decimal value
					hash += `${ ~ ~ ( attribute[ getters[ k ] ]( index ) * hashMultiplier + hashAdditive ) },`;

				}

			}

			// Add another reference to the vertex if it's already
			// used by another index
			if ( hash in hashToIndex ) {

				newIndices.push( hashToIndex[ hash ] );

			} else {

				// copy data to the new index in the temporary attributes
				for ( let j = 0, l = attributeNames.length; j < l; j ++ ) {

					const name = attributeNames[ j ];
					const attribute = geometry.getAttribute( name );
					const morphAttr = geometry.morphAttributes[ name ];
					const itemSize = attribute.itemSize;
					const newarray = tmpAttributes[ name ];
					const newMorphArrays = tmpMorphAttributes[ name ];

					for ( let k = 0; k < itemSize; k ++ ) {

						const getterFunc = getters[ k ];
						const setterFunc = setters[ k ];
						newarray[ setterFunc ]( nextIndex, attribute[ getterFunc ]( index ) );

						if ( morphAttr ) {

							for ( let m = 0, ml = morphAttr.length; m < ml; m ++ ) {

								newMorphArrays[ m ][ setterFunc ]( nextIndex, morphAttr[ m ][ getterFunc ]( index ) );

							}

						}

					}

				}

				hashToIndex[ hash ] = nextIndex;
				newIndices.push( nextIndex );
				nextIndex ++;

			}

		}

		// generate result BufferGeometry
		const result = geometry.clone();
		for ( const name in geometry.attributes ) {

			const tmpAttribute = tmpAttributes[ name ];

			result.setAttribute( name, new BufferAttribute(
				tmpAttribute.array.slice( 0, nextIndex * tmpAttribute.itemSize ),
				tmpAttribute.itemSize,
				tmpAttribute.normalized,
			) );

			if ( ! ( name in tmpMorphAttributes ) ) continue;

			for ( let j = 0; j < tmpMorphAttributes[ name ].length; j ++ ) {

				const tmpMorphAttribute = tmpMorphAttributes[ name ][ j ];

				result.morphAttributes[ name ][ j ] = new BufferAttribute(
					tmpMorphAttribute.array.slice( 0, nextIndex * tmpMorphAttribute.itemSize ),
					tmpMorphAttribute.itemSize,
					tmpMorphAttribute.normalized,
				);

			}

		}

		// indices

		result.setIndex( newIndices );

		return result;

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @param {number} drawMode
	 * @return {BufferGeometry}
	 */
	function toTrianglesDrawMode( geometry, drawMode ) {

		if ( drawMode === TrianglesDrawMode ) {

			console.warn( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.' );
			return geometry;

		}

		if ( drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode ) {

			let index = geometry.getIndex();

			// generate index if not present

			if ( index === null ) {

				const indices = [];

				const position = geometry.getAttribute( 'position' );

				if ( position !== undefined ) {

					for ( let i = 0; i < position.count; i ++ ) {

						indices.push( i );

					}

					geometry.setIndex( indices );
					index = geometry.getIndex();

				} else {

					console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
					return geometry;

				}

			}

			//

			const numberOfTriangles = index.count - 2;
			const newIndices = [];

			if ( drawMode === TriangleFanDrawMode ) {

				// gl.TRIANGLE_FAN

				for ( let i = 1; i <= numberOfTriangles; i ++ ) {

					newIndices.push( index.getX( 0 ) );
					newIndices.push( index.getX( i ) );
					newIndices.push( index.getX( i + 1 ) );

				}

			} else {

				// gl.TRIANGLE_STRIP

				for ( let i = 0; i < numberOfTriangles; i ++ ) {

					if ( i % 2 === 0 ) {

						newIndices.push( index.getX( i ) );
						newIndices.push( index.getX( i + 1 ) );
						newIndices.push( index.getX( i + 2 ) );

					} else {

						newIndices.push( index.getX( i + 2 ) );
						newIndices.push( index.getX( i + 1 ) );
						newIndices.push( index.getX( i ) );

					}

				}

			}

			if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {

				console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );

			}

			// build final geometry

			const newGeometry = geometry.clone();
			newGeometry.setIndex( newIndices );
			newGeometry.clearGroups();

			return newGeometry;

		} else {

			console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:', drawMode );
			return geometry;

		}

	}

	/**
	 * Calculates the morphed attributes of a morphed/skinned BufferGeometry.
	 * Helpful for Raytracing or Decals.
	 * @param {Mesh | Line | Points} object An instance of Mesh, Line or Points.
	 * @return {Object} An Object with original position/normal attributes and morphed ones.
	 */
	function computeMorphedAttributes( object ) {

		const _vA = new Vector3();
		const _vB = new Vector3();
		const _vC = new Vector3();

		const _tempA = new Vector3();
		const _tempB = new Vector3();
		const _tempC = new Vector3();

		const _morphA = new Vector3();
		const _morphB = new Vector3();
		const _morphC = new Vector3();

		function _calculateMorphedAttributeData(
			object,
			attribute,
			morphAttribute,
			morphTargetsRelative,
			a,
			b,
			c,
			modifiedAttributeArray
		) {

			_vA.fromBufferAttribute( attribute, a );
			_vB.fromBufferAttribute( attribute, b );
			_vC.fromBufferAttribute( attribute, c );

			const morphInfluences = object.morphTargetInfluences;

			if ( morphAttribute && morphInfluences ) {

				_morphA.set( 0, 0, 0 );
				_morphB.set( 0, 0, 0 );
				_morphC.set( 0, 0, 0 );

				for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {

					const influence = morphInfluences[ i ];
					const morph = morphAttribute[ i ];

					if ( influence === 0 ) continue;

					_tempA.fromBufferAttribute( morph, a );
					_tempB.fromBufferAttribute( morph, b );
					_tempC.fromBufferAttribute( morph, c );

					if ( morphTargetsRelative ) {

						_morphA.addScaledVector( _tempA, influence );
						_morphB.addScaledVector( _tempB, influence );
						_morphC.addScaledVector( _tempC, influence );

					} else {

						_morphA.addScaledVector( _tempA.sub( _vA ), influence );
						_morphB.addScaledVector( _tempB.sub( _vB ), influence );
						_morphC.addScaledVector( _tempC.sub( _vC ), influence );

					}

				}

				_vA.add( _morphA );
				_vB.add( _morphB );
				_vC.add( _morphC );

			}

			if ( object.isSkinnedMesh ) {

				object.applyBoneTransform( a, _vA );
				object.applyBoneTransform( b, _vB );
				object.applyBoneTransform( c, _vC );

			}

			modifiedAttributeArray[ a * 3 + 0 ] = _vA.x;
			modifiedAttributeArray[ a * 3 + 1 ] = _vA.y;
			modifiedAttributeArray[ a * 3 + 2 ] = _vA.z;
			modifiedAttributeArray[ b * 3 + 0 ] = _vB.x;
			modifiedAttributeArray[ b * 3 + 1 ] = _vB.y;
			modifiedAttributeArray[ b * 3 + 2 ] = _vB.z;
			modifiedAttributeArray[ c * 3 + 0 ] = _vC.x;
			modifiedAttributeArray[ c * 3 + 1 ] = _vC.y;
			modifiedAttributeArray[ c * 3 + 2 ] = _vC.z;

		}

		const geometry = object.geometry;
		const material = object.material;

		let a, b, c;
		const index = geometry.index;
		const positionAttribute = geometry.attributes.position;
		const morphPosition = geometry.morphAttributes.position;
		const morphTargetsRelative = geometry.morphTargetsRelative;
		const normalAttribute = geometry.attributes.normal;
		const morphNormal = geometry.morphAttributes.position;

		const groups = geometry.groups;
		const drawRange = geometry.drawRange;
		let i, j, il, jl;
		let group;
		let start, end;

		const modifiedPosition = new Float32Array( positionAttribute.count * positionAttribute.itemSize );
		const modifiedNormal = new Float32Array( normalAttribute.count * normalAttribute.itemSize );

		if ( index !== null ) {

			// indexed buffer geometry

			if ( Array.isArray( material ) ) {

				for ( i = 0, il = groups.length; i < il; i ++ ) {

					group = groups[ i ];

					start = Math.max( group.start, drawRange.start );
					end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

					for ( j = start, jl = end; j < jl; j += 3 ) {

						a = index.getX( j );
						b = index.getX( j + 1 );
						c = index.getX( j + 2 );

						_calculateMorphedAttributeData(
							object,
							positionAttribute,
							morphPosition,
							morphTargetsRelative,
							a, b, c,
							modifiedPosition
						);

						_calculateMorphedAttributeData(
							object,
							normalAttribute,
							morphNormal,
							morphTargetsRelative,
							a, b, c,
							modifiedNormal
						);

					}

				}

			} else {

				start = Math.max( 0, drawRange.start );
				end = Math.min( index.count, ( drawRange.start + drawRange.count ) );

				for ( i = start, il = end; i < il; i += 3 ) {

					a = index.getX( i );
					b = index.getX( i + 1 );
					c = index.getX( i + 2 );

					_calculateMorphedAttributeData(
						object,
						positionAttribute,
						morphPosition,
						morphTargetsRelative,
						a, b, c,
						modifiedPosition
					);

					_calculateMorphedAttributeData(
						object,
						normalAttribute,
						morphNormal,
						morphTargetsRelative,
						a, b, c,
						modifiedNormal
					);

				}

			}

		} else {

			// non-indexed buffer geometry

			if ( Array.isArray( material ) ) {

				for ( i = 0, il = groups.length; i < il; i ++ ) {

					group = groups[ i ];

					start = Math.max( group.start, drawRange.start );
					end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

					for ( j = start, jl = end; j < jl; j += 3 ) {

						a = j;
						b = j + 1;
						c = j + 2;

						_calculateMorphedAttributeData(
							object,
							positionAttribute,
							morphPosition,
							morphTargetsRelative,
							a, b, c,
							modifiedPosition
						);

						_calculateMorphedAttributeData(
							object,
							normalAttribute,
							morphNormal,
							morphTargetsRelative,
							a, b, c,
							modifiedNormal
						);

					}

				}

			} else {

				start = Math.max( 0, drawRange.start );
				end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) );

				for ( i = start, il = end; i < il; i += 3 ) {

					a = i;
					b = i + 1;
					c = i + 2;

					_calculateMorphedAttributeData(
						object,
						positionAttribute,
						morphPosition,
						morphTargetsRelative,
						a, b, c,
						modifiedPosition
					);

					_calculateMorphedAttributeData(
						object,
						normalAttribute,
						morphNormal,
						morphTargetsRelative,
						a, b, c,
						modifiedNormal
					);

				}

			}

		}

		const morphedPositionAttribute = new Float32BufferAttribute( modifiedPosition, 3 );
		const morphedNormalAttribute = new Float32BufferAttribute( modifiedNormal, 3 );

		return {

			positionAttribute: positionAttribute,
			normalAttribute: normalAttribute,
			morphedPositionAttribute: morphedPositionAttribute,
			morphedNormalAttribute: morphedNormalAttribute

		};

	}

	function mergeGroups( geometry ) {

		if ( geometry.groups.length === 0 ) {

			console.warn( 'THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge.' );
			return geometry;

		}

		let groups = geometry.groups;

		// sort groups by material index

		groups = groups.sort( ( a, b ) => {

			if ( a.materialIndex !== b.materialIndex ) return a.materialIndex - b.materialIndex;

			return a.start - b.start;

		} );

		// create index for non-indexed geometries

		if ( geometry.getIndex() === null ) {

			const positionAttribute = geometry.getAttribute( 'position' );
			const indices = [];

			for ( let i = 0; i < positionAttribute.count; i += 3 ) {

				indices.push( i, i + 1, i + 2 );

			}

			geometry.setIndex( indices );

		}

		// sort index

		const index = geometry.getIndex();

		const newIndices = [];

		for ( let i = 0; i < groups.length; i ++ ) {

			const group = groups[ i ];

			const groupStart = group.start;
			const groupLength = groupStart + group.count;

			for ( let j = groupStart; j < groupLength; j ++ ) {

				newIndices.push( index.getX( j ) );

			}

		}

		geometry.dispose(); // Required to force buffer recreation
		geometry.setIndex( newIndices );

		// update groups indices

		let start = 0;

		for ( let i = 0; i < groups.length; i ++ ) {

			const group = groups[ i ];

			group.start = start;
			start += group.count;

		}

		// merge groups

		let currentGroup = groups[ 0 ];

		geometry.groups = [ currentGroup ];

		for ( let i = 1; i < groups.length; i ++ ) {

			const group = groups[ i ];

			if ( currentGroup.materialIndex === group.materialIndex ) {

				currentGroup.count += group.count;

			} else {

				currentGroup = group;
				geometry.groups.push( currentGroup );

			}

		}

		return geometry;

	}


	/**
	 * Modifies the supplied geometry if it is non-indexed, otherwise creates a new,
	 * non-indexed geometry. Returns the geometry with smooth normals everywhere except
	 * faces that meet at an angle greater than the crease angle.
	 *
	 * @param {BufferGeometry} geometry
	 * @param {number} [creaseAngle]
	 * @return {BufferGeometry}
	 */
	function toCreasedNormals( geometry, creaseAngle = Math.PI / 3 /* 60 degrees */ ) {

		const creaseDot = Math.cos( creaseAngle );
		const hashMultiplier = ( 1 + 1e-10 ) * 1e2;

		// reusable vectors
		const verts = [ new Vector3(), new Vector3(), new Vector3() ];
		const tempVec1 = new Vector3();
		const tempVec2 = new Vector3();
		const tempNorm = new Vector3();
		const tempNorm2 = new Vector3();

		// hashes a vector
		function hashVertex( v ) {

			const x = ~ ~ ( v.x * hashMultiplier );
			const y = ~ ~ ( v.y * hashMultiplier );
			const z = ~ ~ ( v.z * hashMultiplier );
			return `${x},${y},${z}`;

		}

		// BufferGeometry.toNonIndexed() warns if the geometry is non-indexed
		// and returns the original geometry
		const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry;
		const posAttr = resultGeometry.attributes.position;
		const vertexMap = {};

		// find all the normals shared by commonly located vertices
		for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) {

			const i3 = 3 * i;
			const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 );
			const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 );
			const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 );

			tempVec1.subVectors( c, b );
			tempVec2.subVectors( a, b );

			// add the normal to the map for all vertices
			const normal = new Vector3().crossVectors( tempVec1, tempVec2 ).normalize();
			for ( let n = 0; n < 3; n ++ ) {

				const vert = verts[ n ];
				const hash = hashVertex( vert );
				if ( ! ( hash in vertexMap ) ) {

					vertexMap[ hash ] = [];

				}

				vertexMap[ hash ].push( normal );

			}

		}

		// average normals from all vertices that share a common location if they are within the
		// provided crease threshold
		const normalArray = new Float32Array( posAttr.count * 3 );
		const normAttr = new BufferAttribute( normalArray, 3, false );
		for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) {

			// get the face normal for this vertex
			const i3 = 3 * i;
			const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 );
			const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 );
			const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 );

			tempVec1.subVectors( c, b );
			tempVec2.subVectors( a, b );

			tempNorm.crossVectors( tempVec1, tempVec2 ).normalize();

			// average all normals that meet the threshold and set the normal value
			for ( let n = 0; n < 3; n ++ ) {

				const vert = verts[ n ];
				const hash = hashVertex( vert );
				const otherNormals = vertexMap[ hash ];
				tempNorm2.set( 0, 0, 0 );

				for ( let k = 0, lk = otherNormals.length; k < lk; k ++ ) {

					const otherNorm = otherNormals[ k ];
					if ( tempNorm.dot( otherNorm ) > creaseDot ) {

						tempNorm2.add( otherNorm );

					}

				}

				tempNorm2.normalize();
				normAttr.setXYZ( i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z );

			}

		}

		resultGeometry.setAttribute( 'normal', normAttr );
		return resultGeometry;

	}
	/*
	export {
		computeMikkTSpaceTangents,
		mergeGeometries,
		mergeAttributes,
		interleaveAttributes,
		estimateBytesUsed,
		mergeVertices,
		toTrianglesDrawMode,
		computeMorphedAttributes,
		mergeGroups,
		toCreasedNormals
	};*/



	//import { mergeGeometries } from './BufferGeometryUtils.js';

	class LDrawUtils {

		static mergeObject( object ) {

			// Merges geometries in object by materials and returns new object. Use on not indexed geometries.
			// The object buffers reference the old object ones.
			// Special treatment is done to the conditional lines generated by LDrawLoader.

			function extractGroup( geometry, group, elementSize, isConditionalLine ) {

				// Extracts a group from a geometry as a new geometry (with attribute buffers referencing original buffers)

				const newGeometry = new BufferGeometry();

				const originalPositions = geometry.getAttribute( 'position' ).array;
				const originalNormals = elementSize === 3 ? geometry.getAttribute( 'normal' ).array : null;

				const numVertsGroup = Math.min( group.count, Math.floor( originalPositions.length / 3 ) - group.start );
				const vertStart = group.start * 3;
				const vertEnd = ( group.start + numVertsGroup ) * 3;

				const positions = originalPositions.subarray( vertStart, vertEnd );
				const normals = originalNormals !== null ? originalNormals.subarray( vertStart, vertEnd ) : null;

				newGeometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
				if ( normals !== null ) newGeometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

				if ( isConditionalLine ) {

					const controlArray0 = geometry.getAttribute( 'control0' ).array.subarray( vertStart, vertEnd );
					const controlArray1 = geometry.getAttribute( 'control1' ).array.subarray( vertStart, vertEnd );
					const directionArray = geometry.getAttribute( 'direction' ).array.subarray( vertStart, vertEnd );

					newGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) );
					newGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) );
					newGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) );

				}

				return newGeometry;

			}

			function addGeometry( mat, geometry, geometries ) {

				const geoms = geometries[ mat.uuid ];
				if ( ! geoms ) {

					geometries[ mat.uuid ] = {
						mat: mat,
						arr: [ geometry ]
					};

				} else {

					geoms.arr.push( geometry );

				}

			}

			function permuteAttribute( attribute, elemSize ) {

				// Permutes first two vertices of each attribute element

				if ( ! attribute ) return;

				const verts = attribute.array;
				const numVerts = Math.floor( verts.length / 3 );
				let offset = 0;
				for ( let i = 0; i < numVerts; i ++ ) {

					const x = verts[ offset ];
					const y = verts[ offset + 1 ];
					const z = verts[ offset + 2 ];

					verts[ offset ] = verts[ offset + 3 ];
					verts[ offset + 1 ] = verts[ offset + 4 ];
					verts[ offset + 2 ] = verts[ offset + 5 ];

					verts[ offset + 3 ] = x;
					verts[ offset + 4 ] = y;
					verts[ offset + 5 ] = z;

					offset += elemSize * 3;

				}

			}

			// Traverse the object hierarchy collecting geometries and transforming them to world space

			const meshGeometries = {};
			const linesGeometries = {};
			const condLinesGeometries = {};

			object.updateMatrixWorld( true );
			const normalMatrix = new Matrix3();

			object.traverse( c => {

				if ( c.isMesh | c.isLineSegments ) {

					const elemSize = c.isMesh ? 3 : 2;

					const geometry = c.geometry.clone();
					const matrixIsInverted = c.matrixWorld.determinant() < 0;
					if ( matrixIsInverted ) {

						permuteAttribute( geometry.attributes.position, elemSize );
						permuteAttribute( geometry.attributes.normal, elemSize );

					}

					geometry.applyMatrix4( c.matrixWorld );

					if ( c.isConditionalLine ) {

						geometry.attributes.control0.applyMatrix4( c.matrixWorld );
						geometry.attributes.control1.applyMatrix4( c.matrixWorld );
						normalMatrix.getNormalMatrix( c.matrixWorld );
						geometry.attributes.direction.applyNormalMatrix( normalMatrix );

					}

					const geometries = c.isMesh ? meshGeometries : ( c.isConditionalLine ? condLinesGeometries : linesGeometries );

					if ( Array.isArray( c.material ) ) {

						for ( const groupIndex in geometry.groups ) {

							const group = geometry.groups[ groupIndex ];
							const mat = c.material[ group.materialIndex ];
							const newGeometry = extractGroup( geometry, group, elemSize, c.isConditionalLine );
							addGeometry( mat, newGeometry, geometries );

						}

					} else {

						addGeometry( c.material, geometry, geometries );

					}

				}

			} );

			// Create object with merged geometries

			const mergedObject = new Group();

			const meshMaterialsIds = Object.keys( meshGeometries );
			for ( const meshMaterialsId of meshMaterialsIds ) {

				const meshGeometry = meshGeometries[ meshMaterialsId ];
				const mergedGeometry = mergeGeometries( meshGeometry.arr );
				mergedObject.add( new Mesh( mergedGeometry, meshGeometry.mat ) );

			}

			const linesMaterialsIds = Object.keys( linesGeometries );
			for ( const linesMaterialsId of linesMaterialsIds ) {

				const lineGeometry = linesGeometries[ linesMaterialsId ];
				const mergedGeometry = mergeGeometries( lineGeometry.arr );
				mergedObject.add( new LineSegments( mergedGeometry, lineGeometry.mat ) );

			}

			const condLinesMaterialsIds = Object.keys( condLinesGeometries );
			for ( const condLinesMaterialsId of condLinesMaterialsIds ) {

				const condLineGeometry = condLinesGeometries[ condLinesMaterialsId ];
				const mergedGeometry = mergeGeometries( condLineGeometry.arr );
				const condLines = new LineSegments( mergedGeometry, condLineGeometry.mat );
				condLines.isConditionalLine = true;
				mergedObject.add( condLines );

			}

			mergedObject.userData.constructionStep = 0;
			mergedObject.userData.numConstructionSteps = 1;

			return mergedObject;

		}

	}

	//export { LDrawUtils };


	const clock = new Clock();

	class Loop {
	  constructor(camera, scene, renderer) {
		this.camera = camera;
		this.scene = scene;
		this.renderer = renderer;
		// somewhere in the Loop class:
		this.updatables = []
	  }
	  start() {
		this.renderer.setAnimationLoop(() => {
			// tell every animated object to tick forward one frame
			// this.tick();
			// render a frame
			this.renderer.render(this.scene, this.camera);
		});
	  }
	  stop() {
		this.renderer.setAnimationLoop(null);
	  }
	  tick(){
		// only call the getDelta function once per frame!
		const delta = clock.getDelta();
		// console.log(
		//   `The last frame rendered in ${delta * 1000} milliseconds`,
		// );
		// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
		if(this.updatables.length){
			for (const object of this.updatables) {
				if(typeof object.tick == 'function'){
					object.tick(delta);
				}
			}
		}
	  }
	}

	//export { Loop };

   initViewer = ()=>{
		container = document.querySelector('#scene-container');
		let ldraw = new Ldraw();
		ldraw.start();
	}

执行代码

现在我们已经成功添加了很多功能和复杂的交互逻辑,将不同的细节进行分层管理。后续可采用 MVC 模式重构代码,将代码分为三个层级:模型层、视图层和控制层。模型层负责数据的管理,视图层负责展示数据和渲染 UI,控制层则负责协调模型层和视图层之间的交互,同时处理一些业务逻辑。重构后代码层级会更清晰,方便拓展其功能。

最后,将脚本执行到dom即可看到模型。

<!DOCTYPE html>
<html lang="zh-CN">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta name="theme-color" content="#000000" />
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="renderer" content="webkit">
  <meta name="force-rendering" content="webkit">
  <meta name="google-site-verification" content="FTeR0c8arOPKh8c5DYh_9uu98_zJbaWw53J-Sch9MTg">
  <meta data-rh="true" name="keywords" content="three.js实现乐高小轿车">
  <meta data-rh="true" name="description" content="three.js实现乐高小轿车">
  <meta data-rh="true" property="og:title" content="three.js实现乐高小轿车">
  <link rel="icon" href="./favicon.ico">
  <title>three.js实现乐高小轿车</title>
  
  <style>
    body {
		padding: 0;
		margin: 0;
		font: normal 14px/1.42857 Tahoma;
    }

    #scene-container {
	    height: 100vh;
	}

  </style>
</head>
<body onload="initViewer()">
  <div id="scene-container"></div>
  
  <script>
    let initViewer = null
  </script>
</body>
</html>

模型描述文本

还原模型到三维场景

ca61c57de04246e98fe78af4562ac3e0.png

参见:

3. 开发和学习环境,引入threejs | Three.js中文网

LDraw.org - LDraw.org Homepage

举报

相关推荐

0 条评论