0
点赞
收藏
分享

微信扫一扫

面试宝典:PHP中的Yac技术深度分析

静守幸福 1天前 阅读 1
数据结构

5.3. 二叉树的遍历和线索二叉树

5.3.1_1 二叉树的先中后序遍历

遍历:按照某种次序把所有结点都访问一遍

二叉树的递归特性:
        ①要么是个空二叉树
        ②要么就是由“根节点+左子树+右子树”组成的二叉树

先序遍历:根左右(NLR)
中序遍历:左根右(LNR)
后序遍历:左右根(LRN)


先序遍历(PreOrder)的操作过程如下:
1. 若二叉树为空,则什么也不做;
2. 若二叉树非空:
        ①访问根结点;
        ②先序遍历左子树;
        ③先序遍历右子树。
代码实现如下:

typedef struct BiTNode{  
    ElemType data;  
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

// 先序遍历
void PreOrder(BiTree T){  
    if(T!=NULL){     
        visit(T);                 //访问根结点        
        PreOrder(T->lchild);      //递归遍历左子树 
        PreOrder(T->rchild);      //递归遍历右子树
    }
}

先序遍历—第一次路过时访问结点,图示如下

中序遍历(InOrder)的操作过程如下:
1. 若二叉树为空,则什么也不做;
2. 若二叉树非空:
        ①中序遍历左子树;
        ②访问根结点;
        ③中序遍历右子树;
代码实现如下: 

typedef struct BiTNode{  
    ElemType data;  
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

// 中序遍历
void PreOrder(BiTree T){  
    if(T!=NULL){     
        PreOrder(T->lchild);      //递归遍历左子树 
        visit(T);                 //访问根结点        
        PreOrder(T->rchild);      //递归遍历右子树
    }
}

中序遍历—第二次路过时访问结点,图示如下

后序遍历(InOrder)的操作过程如下:
1. 若二叉树为空,则什么也不做;
2. 若二叉树非空:
        ①后序遍历左子树;
        ②后序遍历右子树;
        ③访问根结点。
代码实现如下:

typedef struct BiTNode{  
    ElemType data;  
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

// 后序遍历
void PreOrder(BiTree T){  
    if(T!=NULL){     
        PreOrder(T->lchild);      //递归遍历左子树 
        PreOrder(T->rchild);      //递归遍历右子树
        visit(T);                 //访问根结点        
    }
}

后序遍历—第三次路过时访问结点 ,图示如下

// 应用:求树的深度
int treeDepth(BiTree T){  
    if(T == NULL){  
        return 0;  
    }else{      
        int l = treeDepth(T->lchild); 
        int r = treeDepth(T->rchild); 
        //树的深度=Max(左子树深度,右子树深度)+1
        return l>r ? l+1 r+1;  
    }
}

5.3.1_2 二叉树的层次遍历


算法思想:
①初始化一个辅助队列
②根结点入队
③若队列非空,则队头结点出队,访问该结点,并将其左、右孩子插入队尾(如果有的话)
④重复③直至队列为空
代码实现:

// 二叉树结点(链式存储)
typedef struct BiTNode{  
    char data;   
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

// 链式队列结点
typedef struct LinkNode{ 
    BiTNode *data;             //存结点的指针而不是结点本身
    struct LinkNode *next;
}LinkNode;

typedef struct{ 
    LinkNode *front, *rear;    //队头队尾
}LinkQueue;

// 层序遍历
void LevelOrder(BiTree T){  
    LinkQueue Q; 
    InitQueue(Q);              //初始化辅助队列
    BiTree p;
    EnQueue(Q, T);             //将根结点入队
    while(!IsEmpty(Q)){        //队列不空则循环
        DeQueue(Q, p);         //队头结点出队
        visit(p);              //访问出队结点
        if(p->lchild!=NULL)      
            EnQueue(Q, p->lchild);     //左孩子入队
        if(p->rchild!=NULL)    
            EnQueue(Q, p->rchild);     //右孩子入队
    }
}

5.3.1_3 由遍历序列构造二叉树

若只给出一棵二叉树的 前/中/后/层 序遍历序列中的一种,不能唯一确定一棵二叉树
一种遍历序列可能对应多种形态



前序 + 中序遍历序列

由前序遍历可推出根节点在中序遍历中的位置,从而确定左右结点,再依此类推

后序 + 中序遍历序列

由后序遍历可推出根结点在中序遍历中的位置,从而确定左右结点在中序遍历的位置

层序 + 中序遍历序列

由层序遍历可推出根结点,再根据根节点进一步确定左右的根的位置

5.3.2_1 线索二叉树的概念

普通二叉树进行遍历时,找前驱、后继很不方便,且每次都要从根结点出发,无法从一个指定的结点开始遍历​​​​​​​​​​​​​​。

n 个结点的二叉树,有 n+1 个空链域,可用来记录前驱、后继的信息。
指向前驱、后继的指针被称为“线索”,形成的二叉树就称为线索二叉树。



线索二叉树的存储

// 线索二叉树的结点
typedef struct ThreadNode{ 
    ElemType data;   
    struct ThreadNode *lchild, *rchild; 
    int ltag, rtag;	//左、右线索标志
}ThreadNode,*ThreadTree;

中序线索二叉树的存储

先序线索二叉树



5.3.2_2 二叉树的线索化

中序线索化

//线索二叉树结点
typedef struct ThreadNode{
    ElemType data;  
    struct ThreadNode *lchild, *rchild;   
    int ltag, rtag;            //左、右线索标志
}ThreadNode, *ThreadTree;

// 中序遍历二叉树,一边遍历一边线索化
void InThread(ThreadTree T) {
	if (T != NULL) {
		InThread(p->lchild);    //中序遍历左子树
		visit(T);               //访问根结点
		InThread(p->rchild);    //中序遍历右子树
	}
}

void visit(ThreadNode *q) {
    if(q->lchild==NULL){        //左子树为空,建立前驱线索
        q->lchild=pre;          //
        q->ltag=1;              //修改ltag=1,只有变成1才表示指针是线索
    }
    if(pre!=NULL&&pre->rchild==NULL){
        pre->rchild=q;          //建立前驱结点的后继线索
        pre->rtag=1;
    }
    pre=q;
}

//全局变量pre,指向当前访问结点的前驱
ThreadNode *pre=NULL;           //pre没有前驱,最开始指向NULL


// 中序化线索二叉树T
void CreateInThread(ThreadTree T) {
    pre = NULL;                //pre初始化为NULL
	if (T != NULL) {           //非空二叉树才能线索化
		InThread(T, pre);      //中序化线索二叉树
		if(pre->rchild = NULL)
		    pre->rtag = 1;     //处理遍历的最后一个结点
	}
}

先序线索化 

// 先序遍历二叉树T
void PreThread(ThreadTree T) {
	if (T != NULL) {           //非空二叉树才能线索化
        visit(T);              //先处理根结点
		if(T->ltag ==0)        //lchild不是前驱线索
            PreThread(T->child);
        PreThread(T->child);
  	}
}


void visit(ThreadNode *q) {
    if(q->lchild==NULL){        //左子树为空,建立前驱线索
        q->lchild=pre;          //
        q->ltag=1;              //修改ltag=1,只有变成1才表示指针是线索
    }
    if(pre!=NULL&&pre->rchild==NULL){
        pre->rchild=q;          //建立前驱结点的后继线索
        pre->rtag=1;
    }
    pre=q;
}

//全局变量pre,指向当前访问结点的前驱
ThreadNode *pre=NULL;           //pre没有前驱,最开始指向NULL

void CreateInThread(ThreadTree T) {
    pre = NULL;                //pre初始化为NULL
	if (T != NULL) {           //非空二叉树才能线索化
		PreThread(T);          //先序化线索二叉树
		if(pre->rchild = NULL)
		    pre->rtag = 1;     //处理遍历的最后一个结点
	}
}

后序线索化 

// 后序遍历二叉树T
void PostThread(ThreadTree T) {
	if (T != NULL) {           //非空二叉树才能线索化
		PreThread(T->child);   //后序遍历左子树
        PreThread(T->child);   //后序遍历右子树
        visit(T);              //访问根结点
  	}
}


void visit(ThreadNode *q) {
    if(q->lchild==NULL){        //左子树为空,建立前驱线索
        q->lchild=pre;          //
        q->ltag=1;              //修改ltag=1,只有变成1才表示指针是线索
    }
    if(pre!=NULL&&pre->rchild==NULL){
        pre->rchild=q;          //建立前驱结点的后继线索
        pre->rtag=1;
    }
    pre=q;
}

//全局变量pre,指向当前访问结点的前驱
ThreadNode *pre=NULL;           //pre没有前驱,最开始指向NULL

//后续线索化二叉树T
void CreateInThread(ThreadTree T) {
    pre = NULL;                //pre初始化为NULL
	if (T != NULL) {           //非空二叉树才能线索化
		PostThread(T);          //后续线索化二叉树
		if(pre->rchild = NULL)
		    pre->rtag = 1;     //处理遍历的最后一个结点
	}
}

5.3.2_3 在线索二叉树中找前驱后继

在中序线索二叉树中找到指定结点*p 的中序后继 next  
①若 p->rtag==1,则 next = p->rchild
②若 p->rtag==0,则 next = p 的右子树中最左下结点

// 找到以p为根的子树中,第一个被中序遍历的结点
ThreadNode *FirstNode(ThreadNode *p){
    // 循环找到最左下结点(不一定是叶结点)
    while(p->ltag==0)
        p=p->rchild;
    return p;
}

// 在中序线索二叉树中找到结点p的后继结点
ThreadNode *NextNode(ThreadNode *p){
    // 右子树中最左下的结点
    if(p->rtag==0)
        return FirstNode(p->lchild);
    else
        return p->rchild;    //rtage==1直接返回后继线索
}

// 对中序线索二叉树进行中序循环(利用线索实现的非递归方法) 空间复杂度O(1)
void InOrder(ThreadNode *T){
    for(ThreadNode *p=FirstNode(T); p!=NULL; p=NextNode(p))
        visit(p);
}

在中序线索二叉树中找到指定结点*p 的中序前驱 pre
①若 p->ltag==1,则 pre = p->lchild
②若 p->ltag==0

// 找到以p为根的子树中,最后一个被中序遍历的结点
ThreadNode *LastNode(ThreadNode *p){
    // 循环找到最右下结点(不一定是叶结点)
    while(p->rtag==0)
        p=p->rchild;
    return p;
}

// 在中序线索二叉树中找到结点p的前驱结点
ThreadNode *PreNode(ThreadNode *p){
    // 左子树中最右下的结点
    if(p->ltag==0)
        return LastNode(p->lchild);
    else
        return p->lchild;        //ltage==1直接返回前驱线索
}

// 对中序线索二叉树进行中序循环(非递归方法实现)
void RevOrder(ThreadNode *T){
    for(ThreadNode *p=LastNode(T); p!=NULL; p=PreNode(p))
        visit(p);
}

在先序线索二叉树中找到指定结点*p 的先序后继 next
①若 p->rtag==1,则 next = p->rchild
②若 p->rtag==0

在先序线索二叉树中找到指定结点*p 的先序前驱 pre
①若 p->ltag==1,则 next = p->lchild
②若 p->ltag==0

在后序线索二叉树中找到指定结点*p 的后序前驱 pre
①若 p->ltag==1,则 pre = p->lchild
②若 p->ltag==0

在后序线索二叉树中找到指定结点*p 的后序后继 next
①若 p->rtag==1,则 next = p->rchild
②若 p->rtag==0

​​​​​​​

举报

相关推荐

0 条评论