0
点赞
收藏
分享

微信扫一扫

llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战

文章目录

单例模式


一、单例模式

单例,就是单个实例

单例模式保证某个类在程序中只存在唯一一份实例, 而不会创建出多个实例

比如很多用来管理数据的对象,就是单个实例的。

1.饿汉模式

//希望有唯一实例
class Singleton {
    //单例模式
    private static Singleton instance = new Singleton();
    //因为是static成员,在Singleton这个类被加载的时候,这里就会创建实例
    
    public static Singleton getInstance(){
     //通过getInstance方法来获取到这个实例
        return instance;
    }
    private Singleton(){}
    //将构造方法设置为私有的

}
    public static void main(String[] args) {
        Singleton instance1 = Singleton.getInstance();
        //通过类名调用成员方法,获取到唯一实例
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance1 == instance2);//true
    }
  • 将构造方法设置为私有的,避免再次生成实例。只能通过getInstance()方法来获取类变量创建好的唯一实例
  • 唯一实例是在类加载的时候创建的(创建时间早)->饿汉模式(比较急)
  • 在饿汉模式中,如果在多线程中,多个线程同时读取同一个变量,是线程安全的。只读不修改。

2.懒汉模式(单线程)

比较从容,在第一次使用的时候,再去创建实例

class SingletonLazy{
    private static SingletonLazy instance = null;
    //先设置为空
    public static SingletonLazy getInstance(){
        if (instance == null){
            instance = new SingletonLazy();
        }
        return instance;
    }
    private SingletonLazy(){}
    
}
  • 在首次调用getInstance方法的时候,才会真正创建唯一实例

  • ”懒“意味着高效,省略不必要的操作和开销,只在需要的时候才开始进行。

在这里插入图片描述

  • 违背了单例的要求。
  • 懒汉模式在多线程环境下,涉及到了同一个变量的读取和修改,就存在线程安全问题。

3.懒汉模式(多线程)

解决方法:对if的判断操作和创建实例操作进行加锁,使两个操作始终执行在一起。

class SingletonLazy{
    private static SingletonLazy instance = null;
    //先设置为空
    public static  SingletonLazy getInstance(){
        synchronized(SingletonLazy.class){
            if (instance == null){
                instance = new SingletonLazy();
            }
        }
        return instance;
    }
    private SingletonLazy(){}
}
  • 虽然进行了加锁,但是每次再调用getInstance()方法的时候,都会进行加锁操作。
  • 而懒汉模式的线程安全问题,体现在第一次实例法创建。后续创建好实例后的所有调用操作,都是读操作,没有必要进行加锁。
  • 加锁是一个开销很大的操作,加锁就可能涉及到锁竞争,一冲突就会引发堵塞等待,涉及线程的调度。
改进

在加锁操作前,再进行一次判断

如果实例未创建,此时存在线程安全问题,需要加锁。如果对象已经创建,此时线程就是安全的,不需要加锁

    private static SingletonLazy instance = null;

    //先设置为空
    public static SingletonLazy getInstance() {
        if (instance == null) {
            //第一个if判断的是是否要加锁
            synchronized (SingletonLazy.class) {
                if (instance == null) {
                    //第二个if判断的是,是否要new对象
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }

首次拿到锁的那个进程,一定创建了这个唯一对象。等后续的进程拿到锁后,再次进行判断,就不会创建对象了。

4.指令重排序

1.概念

同样也是因为编译器的优化:

​ 编译器为了执行效率,在保证逻辑不变的前提下,可能会调整原来代码的执行顺序,从而提高效率。

在多线程下,创建实例的操作时,new操作可能会引发指令重排序问题

new操作分为三步:第一步一定是先执行的,可能是1 、2、3 或者1、3、2的顺序;来执行。

就类似于:买房 装修 交钥匙 / 买房、交钥匙、装修 最终效果是一样的。

​ 假设线程1按照1、3、2的顺序来执行。当1和3执行完后,3直接进行赋值操作。此时,instance就不在是null了,而是指向的是一个还没有进行初始化的非法对象。此时1、3执行完,还没开始执行操作2,线程2就开始执行了 。线程2先对instance进行判断。此时intance==null 不成立,线程2直接返回instance。但是instance只是一个还没有进行初始化的非法对象。线程2获取的对象是不完全的。会产生严重的问题。

  • 也就是说,由于操作指令的执行顺序被优化了,导致实例创建的不完全就被调用了。表面提前符合了判断标准,但是内部还没有进行完全。
  • 就类似于:业主买的是精装房,直接交了钥匙,想要拎包入住时,发现没有进行装修还是毛坯房。实际上精装房是包含装修的。那么就是开发商的执行顺序出现了问题,没安排装修就交了钥匙~
2.question:

提问:既然线程1执行到new的过程中,就已经先加锁了。线程2还能new的1、3操作刚完时,就插进来执行吗?

​ 因为线程2的第一个if没有涉及到加锁操作,是完全可以执行的。锁的阻塞等待,一定是两个线程都加锁的时候才会触发。线程1拿到锁时,修改了instance的引用。此时线程2并没有参与锁的竞争,只是进行了第一个if的判断,非空情况下也不会进入if内部进行加锁操作,而是直接进行了返回。因此没有涉及任何阻塞等待。

3.解决方法

采用volatile,用volatile来修饰instence,保证instence在修改的过程中,就不会进行指令重排序的现象了。

class SingletonLazy {
    private static volatile SingletonLazy instance = null;

    //先设置为空
    public static SingletonLazy getInstance() {
        if (instance == null) {
            //第一个if判断的是是否要加锁
            synchronized (SingletonLazy.class) {
                if (instance == null) {
                    //第二个if判断的是,是否要new对象
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
    private SingletonLazy() {
    }

4总结:

单例模式三步走:

1.懒汉模式下的双重if嵌套

2.用Synchronized对第二个if和后续是实例化操作进行加锁

3.用volatile修饰实例,禁止指令重排序。

面试遇到的话,人生如戏全靠演技,要适当藏拙,一步一步优化。从单线程的懒汉模式,到加锁,再到指令重排序

点击移步博客主页,欢迎光临~

偷cyk的图

举报

相关推荐

0 条评论