0
点赞
收藏
分享

微信扫一扫

R统计学2 - 数据分析入门问题21-40

楠蛮鬼影 03-13 09:30 阅读 3

参考博客:
(1)PID双环控制(速度环和位置环)
(2)PID控制(四)(单环与双环PID)
(3)内外双环pid算法

0 单环PID

目标位置→系统→速度→当前位置
输入目标位置,得到输出的位置是当前位置作为反馈量,而这个输出结果的位置量是我们通过控制中间过程量速度来控制的
单环控制的是速度量

1 PID双环控制

在这里插入图片描述
位置环做为外环,速度环作为内环。外环的输出值作为内环的目标值,外环计算一次pid,根据pid公式可以知道,当离位置目标越来越近时,第一个误差(外环误差)就越来越小,以至于输出的内环目标值就越来越小,所以最终达到的效果就是,离目标值越近,速度越小。(理想情况下,要调节好pid参数,不然系统也会崩溃)

代码实现步骤:
PID参数结构体:定义位置、速度闭环的PID参数结构体变量

初始化PID参数:把目标值、期望值、累计偏差清零,配置PID系数
在这里插入图片描述

设置目标位置:只要设置外环的,内环的不用设置,因为内环的目标值,就是外环的输出值。

PID双环控制
在定时器中断(1ms)里,每50ms计算一次当前编码器的总计数值,并通过这个值进行外环PID
(位置环)计算,得到目标速度,要经过速度限幅(防止速度过快),然后存放到g_motor_data.motor_pwm变量(临时存放而已),根据目标速度,再进行速度环PID计算,最终得出要输出的pwm比较值,存放g_motor_data.motor_pwm变量(最终存放),然后再限制pwm比较值输出
在这里插入图片描述

3 PID双环控制详细解析

如果采用PID双环控制,控制的其实就是加速度。如果直接输入目标位置,输出当前位置,控制直接是用加速度来控制这个位置显然是不稳定的。所以我们采用双环,用外环来输出目标速度,用内环来控制加速度从而来控制位置
总体流程:目标位置→系统1→目标速度→系统2→加速度→当前位置和速度→反馈回系统1和2

外环:目标位置→系统1→目标速度→反馈给系统1

内环:目标速度→系统2→加速度→当前位置→反馈给系统2

内环是把外环的目标速度作为目标值,根据当前的速度控制加速度从而向目标加速度靠近,最后再把输出值作为反馈值

4 双环PID控制器的C++代码实现

float outer_pid_controller(float setpoint, float input, float kp, float ki, float kd, float dt) {
    static float integral = 0;
    static float prev_error = 0;
    float error = setpoint - input;

    // 计算积分项
    integral += error * dt;

    // 计算微分项
    float derivative = (error - prev_error) / dt;

    // 计算输出
    float output = kp * error + ki * integral + kd * derivative;

    // 更新上一个误差
    prev_error = error;

    return output;
}

float inner_pid_controller(float setpoint, float input, float kp, float ki, float kd, float dt) {
    static float integral = 0;
    static float prev_error = 0;
    float error = setpoint - input;

    // 计算积分项
    integral += error * dt;

    // 计算微分项
    float derivative = (error - prev_error) / dt;

    // 计算输出
    float output = kp * error + ki * integral + kd * derivative;

    // 更新上一个误差
    prev_error = error;

    return output;
}

float double_pid_controller(float setpoint, float input, float outer_kp, float outer_ki, float outer_kd, float inner_kp, float inner_ki, float inner_kd, float dt) {
    // 计算外环控制器输出
    float outer_output = outer_pid_controller(setpoint, input, outer_kp, outer_ki, outer_kd, dt);

    // 计算内环控制器输出
    float inner_output = inner_pid_controller(outer_output, input, inner_kp, inner_ki, inner_kd, dt);

    return inner_output;
}

outer_pid_controllerinner_pid_controller分别是外环和内环PID控制器的实现函数。double_pid_controller函数则是将两个PID控制器串联起来,实现双环PID控制器。其中,setpoint是设定值,input是输入值,outer_kpouter_kiouter_kd是外环控制器的比例、积分和微分系数,inner_kpinner_kiinner_kd是内环控制器的比例、积分和微分系数,dt是采样时间。该函数返回内环PID控制器的输出值。

百度Apollo纵向控制原理如下所示,该图可以为纵向控制器的设置提供参考:
百度Apollo纵向控制框架

6 油门刹车标定表

纵向控制逻辑:油门 --> 功率 --> 转速 / 扭矩 --> 车速 / 车加速度 --> 车加速

找到油门和v,a对应的关系
在这里插入图片描述
做实验,踩不同的油门,得到不同的v,a曲线
在这里插入图片描述
对于一个throttle,不同的时间 t 得到一系列v、a点,v,a可以合并,得到v,a曲线
在这里插入图片描述
不同的throttle会得到不同的v、a曲线
在这里插入图片描述
使用不同的throttle做实验,可以得到一个三维曲面
在这里插入图片描述
通过做实验,得到大量的(v,a,throttle)的三维点,从而拟合出throttle = f(v,a)

举报

相关推荐

0 条评论