0
点赞
收藏
分享

微信扫一扫

Rust跨平台编译

如果你感觉自己被困住了,焦虑并充满消极情绪,生命出现了停滞,那么治疗方法很简单:「做点什么」

大家好,我是「柒八九」。一个「专注于前端开发技术/RustAI应用知识分享」Coder


前言

之前我们不是写了一篇Rust 赋能前端-开发一款属于你的前端脚手架,从系统架构角度带大家看如何从0到1构建一个功能完备的前端脚手架。因为,内容包含很多,有些同学说有点消化不了,所以前段时间又写了几篇关于写脚手架可能会用到的技术。

  1. 如何在Rust中操作JSON
  2. Rust 写脚手架,Clap你应该知道的二三事

有动手能力强的小伙伴,就开始动手写自己的脚手架了。在他们写完功能后,他们就想要把脚手架编译成二进制文件,并且通过直接访问或者设置.bashrc等全局访问。更有甚者,他们还想让自己的朋友使用。在实际操作过程中,就会发生一个问题。

A同学用Mac构建了一个工具,但是她想让B同学在Windows环境上使用。此时就会发生问题,我们都知道WindowsMac由于系统架构的不同,在它们环境下编译的二进制文件是「不互通」的。

之前,我们处理的方式就是采用「交叉编译」也就是大家说的跨平台编译。但是呢,由于受文章内容的限制,我们就一带而过,没有过多的去解释。

而有的小伙伴,想了解这方面的知识。所以,今天我们就来聊聊--Rust跨平台编译

好了,天不早了,干点正事哇。

我们能所学到的知识点

  1. 跨平台编译及其在Rust中的好处
  2. Rust 目标三元组
  3. Rust原生跨平台编译
  4. 项目初始化
  5. 从Mac到Windows环境的跨平台编译
  6. 如何编写特定于平台的代码
  7. 其他跨平台解决方案

1. 跨平台编译及其在Rust中的好处

跨平台编译是指能够在一个平台上编译源代码,生成可以在其他平台上运行的可执行文件库文件。它的主要好处是可以显著提高代码的「可移植性」「复用性」

Rust 中,跨平台编译有以下主要优势:

  1. 「无需依赖虚拟机」不同于 Java.NET 等需要虚拟机的语言,Rust 编译器「直接将代码编译为机器码」,因此可以直接在目标平台上运行,无需额外的运行时环境,提高了性能。
  2. 「静态链接」Rust 默认静态链接所有依赖库,生成的可执行文件是独立的,无需依赖共享库即可运行,便于部署和分发。
  3. 「LLVM 支持」Rust 使用 LLVM 作为编译器后端,LLVM 提供了强大的跨平台支持,能为多种 CPU 架构生成高质量的机器码。
  4. 「标准库的跨平台支持」Rust 的标准库就设计为跨平台的,它利用了一些跨平台的抽象层,如跨平台系统调用接口,从而使标准库能够在不同操作系统上运行。
  5. 「编译时单元测试」Rust 的单元测试在编译时就运行,可以确保在发布时,程序在不同平台上的行为是一致的。

需要说明的是,虽然 Rust 为跨平台编译提供了很好的支持,但由于不同平台的差异,仍然可能需要一些平台特定的代码。不过相比其他语言,Rust 的跨平台编译支持无疑更加方便和高效。

2. Rust 目标三元组

要进行跨平台编译,我们需要知道我们要构建的平台的「目标三元组」target triple)。Rust使用与LLVM[1]相同的格式。格式为<arch><sub>-<vendor>-<sys>-<env>

例如,

  • x86_64-unknown-linux-gnu代表一个64位Linux机器
  • x86_64-pc-windows-gnu代表一个64位的Windows机器

我们可以运行rustc --print target-list将打印出Rust支持的所有目标。这是一段又臭又长的数据信息。

确定我们关心的平台的目标三元组的两种最佳方法是:

  1. 在该平台上运行rustc -vV,并查找以host:开头的行——该行的其余部分将是目标三元组
  2. 或者在rust platform-support [2]页面中查找

下面一些比较常见的目标三元组

目标三元组名

描述

x86_64-unknown-linux-gnu

64位Linux(内核3.2+,glibc 2.17+)

x86_64-pc-windows-gnu

64位MinGW(Windows 7+)

x86_64-pc-windows-msvc

64位MSVC(Windows 7+)

x86_64-apple-darwin

64位macOS(10.7+,Lion+)

aarch64-unknown-linux-gnu

ARM64 Linux(内核4.1,glibc 2.17+)

aarch64-apple-darwin

ARM64 macOS(11.0+,Big Sur+)

aarch64-apple-ios

ARM64 iOS

aarch64-apple-ios-sim

ARM64上的Apple iOS模拟器

armv7-linux-androideabi

ARMv7a Android

3. Rust原生跨平台编译

之前,我们在处理f_cli的跨平台编译的时候,我们直接是用cargo build --target xx,这是Rust内置的方式。

但是呢,这块有一个问题。

要将源代码编译成适配特定平台,我们需要指定一个目标(target)。这告诉编译器我们的代码应该编译为哪个平台。因此,我们需要安装相应的 GCC[3]。然后,将目标添加到 Rust 工具链中。

工具链是一组工具,帮助语言生成功能性的目标代码。它们可以提供编译器链接器程序,或者额外的库中扩展功能。

下一步是添加链接器。这可以在 Cargo 配置中设置。

Rust 编译器「按顺序处理程序中的每个源代码文件」,并检查我们的代码以确保其遵循 Rust 语言的规则,并「将我们的源代码转换为称为目标文件的机器语言文件」编译器创建一个或多个目标文件之后,另一个名为链接器的程序将编译器生成的所有目标文件合并为一个「单独的可执行程序」。除了能够链接目标文件外,链接器还能够链接库文件。库文件是预编译代码的集合,已经被“打包”以供在其他程序中重用。

例如,如果我们想要在Mac环境下将程序编译成可以在Windows环境下运行的。就需要执行以下步骤

  1. 安装目标 mingw-w64

brew install mingw-w64

  1. rustup 添加目标:

rustup target add x86_64-pc-windows-gnu

  1. 创建 .cargo/config

[target.x86_64-pc-windows-gnu]
linker = "x86_64-w64-mingw32-gcc"

  • 将以下指令添加到 .cargo/config

最后运行:

cargo build 
  --target=x86_64-pc-windows-gnu 
  --verbose

这只是其中一个平台,如果我们的程序想要在多个平台上发布,那就需要做更多的设置。这是一项功能繁杂的工程。

上面的解决方式是可以的,但是今天我们再解释一种更优雅的跨平台编译方式。--cross[4],该crate曾由Rust嵌入式工作组维护。

下面,我们就简单来启动一个小项目来讲解一下如何使用cross进行Rust的跨平台编译。

4. 项目初始化

又到了我们再熟悉不过的场景了。我们用cargo new构建一个项目

cargo new cross_compile

然后,我们将main.rs中内容替换成如下代码:

use current_platform::CURRENT_PLATFORM;

fn main() {
    println!("我用的电脑系统是{}!", CURRENT_PLATFORM);
}

我们使用current_platformcrate来探查我们的代码运行的系统信息。

我们可以使用cargo run来执行对应的代码。因为我的系统是mac,所以CURRENT_PLATFORM对应的值为x86_64-apple-darwin

我们可以通过rustc -vV进行查验。

如图所示,通过current_platform返回的值和rustc的值是匹配的。大家可以在自己的电脑上运行上面的代码。

5. 从Mac到Windows环境的跨平台编译

通过上文我们已经得知Windows的目标三元组是x86_64-pc-windows-gnu那么我们就来开始我们的操作 - 在Mac中将代码编译到Windows环境中。

我们使用cross crate进行操作。

第一步是运行cargo install cross。这将把Cross安装到$HOME/.cargo/bin

Cross通过使用一个带有适当工具链的镜像的容器引擎来工作。

由于我们是macOS,所以我们选择使用Docker来进行处理。对于Linux,它建议使用Podman[5],这是一个流行的Docker替代品。

使用cross进行交叉编译和cargo类似。也是需要指定需要编译的target

cross run --target x86_64-pc-windows-gnu

第一次运行时会花费一些时间,因为需要下载并启动适当的容器。

一旦完成,我们就会看到对应的代码输出。(正如上面图中的最后一行)。我们看到cross_compile.exe正在Windows环境上运行!

从上面的输出中可以看到,编译后的.exe文件位于target/x86_64-pc-windows-gnu/debug。我们可以将其复制到Windows机器上运行,会显示预期的输出。

执行完上述工作后,我们就可以在Docker中查看对应的镜像信息。

Cross甚至支持在其他平台上运行测试!让我们在main.rs文件中添加一个测试:

mod tests {
    use current_platform::{COMPILED_ON, CURRENT_PLATFORM};

    #[test]
    fn test_compiled_on_equals_current_platform() {
        assert_eq!(COMPILED_ON, CURRENT_PLATFORM);
    }
}

请注意,这是一个我们期望在Mac上运行时通过的测试,但当我们跨编译到Windows并在那里运行时将会失败。

我们在Mac上运行cargo test,会得到这样的输出:

要在Windows上运行测试,语法与运行可执行文件非常相似:

cross test --target x86_64-pc-windows-gnu

大约一分钟后,我们会得到输出:

很遗憾,测试失败了!

测试不是在所有平台上都受支持。此外,由于线程问题,测试是顺序运行的,这可能比在本机运行测试要慢得多。

6. 如何编写特定于平台的代码

通常,我们可能希望编写仅在一个平台上运行的代码。Rust通过cfg属性[6]使这变得简单。

让我们修改我们的程序,添加一个仅在Windows上打印的消息。事实上,我们甚至不会在非Windows平台上编译此代码:

use current_platform::CURRENT_PLATFORM;

#[cfg(target_os="windows")]
fn windows_only() {
    println!("该方法只在windows环境被触发");
}

fn main() {
    println!("我用的电脑系统是{}!", CURRENT_PLATFORM);
    #[cfg(target_os="windows")]
    {
        windows_only();
    }
}

在这里,我们将cfg属性应用于windows_only()函数,以便它不会在非Windows平台上编译。但这意味着我们只能在Windows上调用它,因此我们将相同的cfg属性应用于调用该函数的代码块。

实际上,我们还可以将属性应用于其他位置,如enumstruct和匹配表达式!

Mac上运行cargo run会得到以下输出:

如我们所见,上面的输出没有Windows特定的消息。但使用cross run --target x86_64-pc-windows-gnu会得到以下输出:

由于编码的原因,有些汉字没显示全,但是这不是主要的核心点,我们就不做处理了。

Rust还提供了一种根据平台信息按需应用属性的简单方法

7. 其他跨平台解决方案

上面我们介绍了两种跨平台编译的的方式

  1. 内置方式cargo run --target xxx
  2. cross run --target xx

可以说,上面的方式属于是N vs N的。也就是可以在多个平台进行互相编译。

其实还有很多解决的方案。只不过有些解决方案是1 vs N 或者是N vs 1的。 下面我们就简单的列举几个。

  1. cargo-xwin[7]:将 Cargo 项目交叉编译为 Windows msvc 目标
  2. cargo-zigbuild[8]:使用 zig 作为链接器编译 Cargo 项目。

后记

「分享是一种态度」

「全文完,既然看到这里了,如果觉得不错,随手点个赞和“在看”吧。」

Reference

[1]

LLVM: https://llvm.org/

[2]

rust platform-support : https://doc.rust-lang.org/nightly/rustc/platform-support.html

[3]

GCC: https://gcc.gnu.org/

[4]

cross: https://crates.io/crates/cross

[5]

Podman: https://podman.io/

[6]

cfg属性: https://doc.rust-lang.org/rust-by-example/attribute/cfg.html

[7]

cargo-xwin: https://github.com/rust-cross/cargo-xwin

[8]

cargo-zigbuild: https://github.com/rust-cross/cargo-zigbuild


举报

相关推荐

0 条评论