0
点赞
收藏
分享

微信扫一扫

大数据导论-大数据分析——沐雨先生

RJ_Hwang 04-01 19:30 阅读 2

【实验目的】

掌握Pthon/R语言进行大数据分析,包括分类任务和聚类任务。掌握kNN、决策树、SVM分类器、kmeans聚类算法的Python或R语言编程方法。

【实验内容】

使用Python或R语言完成大数据分析任务
1、使用kNN、决策树、SVM模型,对iris数据集进行分类
2、使用kmeans聚类算法对iris数据集进行聚类

  • Python导入iris数据集方法
from sklearn.datasets import load_iris
iris=load_iris()
attributes=iris.data #获取属性数据
#获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target=iris.target
labels=iris.feature_names#获取类别名字
print(labels)
print(attributes)
print(target)
  • R语言导入iris数据集
data("iris")
summary(iris)

我选择使用Python语言完成实验。

1.kNN算法

import random

import numpy as np
import operator
from sklearn.datasets import load_iris

iris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_names

f1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):
    f1[i].append(f2[i])
    dataset.append(f1[i])
    i = i+1
library = []
n = int(len(f1)*0.3)
samples = random.sample(f1, n)
for x in dataset:
    if x not in samples:
        library.append(x);

def createDataSet():
    #四组二维特征
    group = np.array(library)
    #四组特征的标签
    labels = f2
    return group, labels

def classify0(inX, dataSet, labels, k):
    '''
        :param inX: 测试样本(arr)
        :param dataSet: 训练数据集(arr)
        :param labels: 类别(list)
        :param k:(int)
        :return: 类别
    '''
    #计算距离
    dataSetSize = dataSet.shape[0]  # 样本数量
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #tile(inX{数组},(dataSetSize{倍数},1{竖向})):将数组(inX)竖向(1)复制dataSetSize倍
    sqDiffMat = diffMat ** 2                        #先求平方
    sqDistances = sqDiffMat.sum(axis=1)             #再求平方和
    distances = sqDistances ** 0.5                  #开根号,欧式距离
    sortedDistIndicies = distances.argsort()  #距离从小到大排序的索引
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]  #用索引得到相应的类别
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    return max(classCount, key=lambda k: classCount[k])  # 返回频数最大的类别

if __name__ == '__main__':
    #创建数据集
    group, labels = createDataSet()
    #测试集
    i=0;
    while i<len(samples):
        test_class = classify0(samples[i], group, labels, 3)
        print("测试用例:",samples[i],"所属类别: ",test_class)
        i+=1
    #打印分类结果

2.决策树算法

# tree.py
import copy
import random
from sklearn.datasets import load_iris

# 找到出现次数最多的分类名称
import operator
# 计算给定数据集的熵
from math import log


def calShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    # 为所有可能的分类创建字典
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        # 计算熵,先求p
        prob = float(labelCounts[key]) / numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt


iris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_names
labels1=copy.deepcopy(labels)

f1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):
    f1[i].append(f2[i])
    dataset.append(f1[i])
    i = i+1

library = []
n = int(len(f1)*0.3)
samples = random.sample(dataset,n)
for x in dataset:
    if x not in samples:
        library.append(x)

while i<len(samples):
    del samples[i][4]
    i+=1



# 构造数据集
def creatDataSet():
    dataSet1 = library
    labels1 = labels

    return dataSet1, labels1


# 根据属性及其属性值划分数据集
def splitDataSet(dataSet, axis, value):
    '''dataSet : 待划分的数据集
        axis : 属性及特征
        value : 属性值及特征的hasattr值'''
    retDataSet = []
    for featVet in dataSet:
        if featVet[axis] == value:
            reducedFeatVec = featVet[:axis]
            reducedFeatVec.extend(featVet[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet


# 选择最好的数据集划分方式,及根绝信息增益选择划分属性
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calShannonEnt(dataSet)
    bestInfoGain, bestFeature = 0, -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        # 计算每种划分方式的信息熵
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy += prob * calShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature




def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
        sortedClassCount = sorted(
            classCount.items(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]


# 创建树的函数
def creatTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 类别完全相同停止划分
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel: {}}
    del (labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        sublabels = labels[:]
        myTree[bestFeatLabel][value] = creatTree(
            splitDataSet(dataSet, bestFeat, value), sublabels)
    return myTree

def classify(inputTree,featLabels,testVec):
    global classLabel
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__=='dict':
                classLabel = classify(secondDict[key],featLabels,testVec)
            else: classLabel = secondDict[key]
    return classLabel



if __name__ == '__main__':
    myData, labels = creatDataSet()

    print("数据集:{}\n 标签:{}".format(myData, labels))
    print("该数据集下的香农熵为:{}".format(calShannonEnt(myData)))
    #print("划分前的数据集:{}\n \n按照“离开水是否能生存”为划分属性,得到下一层待划分的结果为:\n{}--------{}".format(myData, splitDataSet(myData, 0, 0),
                                                                                #splitDataSet(myData, 0, 1)))
    chooseBestFeatureToSplit(myData)
    myTree = creatTree(myData, labels)

    i=0
    print("决策树:",myTree)
    while (i < len(samples)):
        f = classify(myTree, labels1, samples[i])
        print("测试用例:", samples[i], "测试结果: ", f)
        i = i + 1


{'petal length (cm)': {1.7: 0, 1.4: 0, 1.6: 0, 1.3: 0, 1.5: 0, 1.1: 0, 1.2: 0, 1.0: 0, 1.9: 0, 4.7: 1,
                       4.5:  {'sepal length (cm)': {4.9: 2, 5.6: 1, 6.0: 1, 5.7: 1, 6.4: 1, 6.2: 1, 5.4: 1}},
                       4.9: {'sepal width (cm)': {2.5: 1, 3.0: 2, 3.1: 1, 2.8: 2, 2.7: 2}}, 4.0: 1,
                       5.0: {'sepal length (cm)': {6.3: 2, 5.7: 2, 6.7: 1, 6.0: 2}}, 6.0: 2, 3.5: 1, 3.0: 1, 4.6: 1, 4.4: 1, 4.1: 1,
                       5.1: {'sepal length (cm)': {5.8: 2, 6.9: 2, 6.3: 2, 6.0: 1, 6.5: 2, 5.9: 2}}, 5.9: 2, 5.6: 2, 5.5: 2, 5.4: 2, 6.6: 2, 6.1: 2, 6.9: 2, 6.4: 2, 3.6: 1, 3.3: 1, 3.8: 1, 3.7: 1, 4.2: 1,
                       4.8: {'sepal length (cm)': {6.0: 2, 5.9: 1, 6.8: 1, 6.2: 2}}, 4.3: 1, 5.8: 2, 5.3: 2, 5.7: 2, 5.2: 2, 6.3: 2, 6.7: 2, 3.9: 1}}

3.SVM算法

from sklearn.datasets import load_iris
from sklearn import svm
import numpy as np
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors

iris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # Y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes)

x = attributes[:, 0:2]
y = target
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, random_state=1, test_size=0.3)

clf = svm.SVC(kernel='linear')
clf.fit(x_train, y_train)

acc = clf.predict(x_train) == y_train.flat
print('Accuracy:%f' % (np.mean(acc)))

# print("SVM-训练集的准确率:", clf.score(x_train, y_train))
# # y_hat = clf.predict(x_train)
#
# print("SVM-测试集的准确率:", clf.score(x_test, y_test))
# # y_hat = clf.predict(x_test)

x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]
grid_test = np.stack((x1.flat, x2.flat), axis=1)

print("grid_test = \n", grid_test)
grid_hat = clf.predict(grid_test)
print("grid_hat = \n", grid_hat)
grid_hat = grid_hat.reshape(x1.shape)

# mpl.rcParams['font.sans-serif'] = [u'SimHei']
# mpl.rcParams['axes.unicode_minus'] = False

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
# cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])

plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.plot(x[:, 0], x[:, 1], 'o', alpha=0.5, color='blue', markeredgecolor='k')
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10)
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("SVM")
plt.show()

4.Kmeans算法

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

iris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes.shape)
print(attributes)
print(target)

plt.style.use('seaborn')  # 样式美化

x = attributes[:, 0:2]
y = target
plt.scatter(attributes[:, 0], attributes[:, 1], s=50, marker='o', label='see')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.show()

est = KMeans(n_clusters=3)  # 选择聚为 x 类
est.fit(attributes)
y_kmeans = est.predict(attributes)  # 预测类别,输出为含0、1、2、3数字的数组
x0 = attributes[y_kmeans == 0]
x1 = attributes[y_kmeans == 1]
x2 = attributes[y_kmeans == 2]

# 为预测结果上色并可视化
x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()

plt.scatter(x0[:, 0], x0[:, 1], s=50, c="red", marker='o', label='label0', cmap='viridis')
plt.scatter(x1[:, 0], x1[:, 1], s=50, c="green", marker='*', label='label1', cmap='viridis')
plt.scatter(x2[:, 0], x2[:, 1], s=50, c="blue", marker='+', label='label2', cmap='viridis')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
centers = est.cluster_centers_  # 找出中心
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)  # 绘制中心点
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("kmeans")
plt.legend(loc=2)
plt.show()
举报

相关推荐

0 条评论