0
点赞
收藏
分享

微信扫一扫

如何使用Python进行Web开发,如Flask或Django?

前言

代码仓库:spla-tam/SplaTAM: SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM (CVPR 2024) (github.com)icon-default.png?t=N7T8https://github.com/spla-tam/SplaTAM

论文地址2312.02126.pdf (arxiv.org)

一、实验环境

1.1  电脑环境

Ubuntu18.04,python3.10,cuda11.6,pytorch1.12.1

1.2  配置须知

根据作者给的代码仓库,本人按照README文件进行配置,需要注意如下几点

1、pip install -r requirements.txt这块git的下载可能会很慢,可以注释掉然后再重新下载

在项目目录下运行下面指令即可: 

git clone https://github.com/JonathonLuiten/diff-gaussian-rasterization-w-depth

2、然后配置的时候,需要在终端bash的环境变量里面加入cuda的位置,修改.bashrc

3、编译器gcc版本需要降低到10,运行指令:

conda install gxx_linux-64=10

4、然后在下载的这个目录运行pip install .(注意有一个点 . )即可安装好diff-gaussian-rasterization-w-depth这个库(可微高斯光栅化的库)。

1.3  下载数据集(运行下载脚本即可)

代码提供给了几种数据集,有IPhone设备收集(可以在线和捕获照片后离线), 也有经典的数据集Replica、TUM-RGBD、ScanNet、ScanNet++、ReplicaV2 随后作者给出了上述数据集的基准测试的运行指令。

二、配置过程

由于本人在Ubuntu系统下运行,因此配置的过程也是使用的基于Linux的:

2.1  环境搭建

(conda安装+Python3.10的虚拟环境+cuda+pytorch+requirements.txt对应功能包)

conda create -n splatam python=3.10
conda activate splatam
conda install -c "nvidia/label/cuda-11.6.0" cuda-toolkit
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
pip install -r requirements.txt

2.2  下载数据集

由于没有IPhone手机和相关设备,因此只能离线下载数据集进行渲染,本人选择的是TUM-RGBD数据集,因为Replica数据集太大了,下载时间太长。

bash bash_scripts/download_tum.sh

2.3  训练SplaTAM(渲染过程)

首先先把 configs/tum/splatam.py 文件里的 use_wandb = True 改成了 False

然后在终端运行即可开始训练:

python scripts/splatam.py configs/tum/splatam.py

训练过程如图所示:

使用的GTX4070显卡,训练了大概四五十分钟。 

三、复现结果

训练完成之后,我们运行下面的指令即可得到渲染的最终结果和渲染过程视频。

3.1  最终结果展示

在终端输入指令

python viz_scripts/final_recon.py configs/tum/splatam.py

在config/tum/splatam.py中修改参数,重新再训练得到对比如下:

3.2  渲染过程视频

在终端输入指令

python viz_scripts/online_recon.py configs/tum/splatam.py

视频放不上去,大家可以运行这个指令自我尝试一下。

四、算法解读

4.1  算法对比

【数据集】

在四个数据集ScanNet++ 、Replica、TUM-RGBD、ScanNet进行评估

【评价指标】

为了测量RGB渲染性能使用了PSNR、SSIM和LPIPS

【损失函数】

对于深度渲染性能使用深度L1损失

对于摄像机姿态估计跟踪使用平均绝对轨迹误差(ATE RMSE)

【Baselines】

比较的主要基线方法是Point-SLAM。

4.1  各向同性的3DGS

SplaTAM公式:

3DGS公式:

4.2  基于Splatting的可微分渲染

4.3  SplaTAM的缺点

尽管 SplaTAM 实现了最先进的性能,但该方法对运动模糊、大深度噪声和激进旋转表现出一定的敏感性。

五、代码解读

5.1  代码整体框架

对于项目代码的分析框架如下所示:

5.2  配置文件:configs/tum/splatam.py

5.3  核心算法文件:scripts/splatam.py

其中的rgbd_slam函数是核心算法的实现

 其他的重要函数见本人所制作的PPT,如下所示:

5.3.1  初始化阶段

 5.3.2  Tracking阶段

5.3.3  Mapping阶段

5.3.4  可视化阶段

可视化阶段: 可以使用生成的3D模型和相机轨迹来可视化场景。 将3D点云渲染成2D图像,并展示相机在场景中的运动轨迹。 可视化有助于理解算法的性能和重建的质量,还可以用于调试和优化算法参数。

 5.3.5  迭代优化

在整个SplaTAM算法中,跟踪和建图阶段是交替进行的。 每次迭代都会根据新的观测数据更新相机轨迹和场景模型,直到满足停止条件,例如达到预设的迭代次数或者误差收敛到一个可接受的范围。

5.3.6  反向传播 

5.4  其他算法文件

5.4.1utils/keyframe_selection.py
5.4.2utils/slam_external.py
5.4.3utils/slam_helper.py

这部分的内容,还请读者们自行阅读代码,代码量较少,阅读难度较低。

5.5  光栅化

3DGS的渲染过程是利用了光栅化(rasterization) 而光栅化的过程需要在GPU上运行。

from diff_gaussian_rasterization import GaussianRasterizationSettings GaussianRasterizer

这部分的源码用cuda写的 GaussianRasterizationSettings与GaussianRasterizer对应的代码 在submodules/diff-gaussian-rasterization/diff_gaussian_rasterization/__init__.py 光栅化的源码主要的运行及计算的工程是forward(采用前向渲染)

该函数使用了CUDA并行计算,通过调用名为 preprocessCUDA 的 CUDA 核函数来执行高斯光栅化的前处理。CUDA 核函数的执行由函数参数确定。在 CUDA 核函数中,每个线程块由多个线程组成,负责处理其中的一部分数据,从而加速高斯光栅化的计算。

参考链接如下:https://github.com/JonathonLuiten/diff-gaussian-rasterization-w-depth

总结

举报

相关推荐

0 条评论