通常,对于hadoop或者storm这种任务类型的程序,我们都希望能够在本地进行一次调试,然后再提交到集群上跑任务。
storm和hadoop类似,有本地模式和集群模式。相比hadoop而言,storm的本地模式更加简单,不需要在本地(windows环境)安装任何storm的软件或者工具等(什么都不需要额外安装,只需要maven引入storm的jar即可)。本文就是如何在windows上调试简单storm程序。
1、一个简单的wordcount程序:
1)建立maven项目,pom.xml
<dependency>
         <groupId>org.apache.storm</groupId>
         <artifactId>storm-core</artifactId>
         <version>0.10.0</version>
         <scope>provided</scope> 
    </dependency> 2)RandomSentenceSpout:(相当于数据生产者)
package cn.edu.nuc.StormTest.wordcount;
import java.util.Map;
import java.util.Random;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
public class RandomSentenceSpout extends BaseRichSpout{
  /**
   * 
   */
  private static final long serialVersionUID = 1L;
  SpoutOutputCollector _collector;
  Random _rand;
  @Override
  public void open(Map conf, TopologyContext context,
      SpoutOutputCollector collector) {
    _collector = collector;
    _rand = new Random();
  }
  @Override
  public void nextTuple() {
    // 睡眠一段时间后再产生一个数据
    Utils.sleep(100);
    // 句子数组
    String[] sentences = new String[] { "the cow jumped over the moon",
        "an apple a day keeps the doctor away",
        "four score and seven years ago",
        "snow white and the seven dwarfs",
        "i am at two with nature" };
    // 随机选择一个句子
    String sentence = sentences[_rand.nextInt(sentences.length)];
    // 发射该句子给Bolt
    _collector.emit(new Values(sentence));
  }
  // 确认函数
  @Override
  public void ack(Object id) {
  }
  // 处理失败的时候调用
  @Override
  public void fail(Object id) {
  }
  @Override
  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    // 定义一个字段word
    declarer.declare(new Fields("word"));
  }
} 3)SplitSentenceBolt:(这里的bolt相当于mapreduce中的map函数)
package cn.edu.nuc.StormTest.wordcount;
import java.util.StringTokenizer;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class SplitSentenceBolt extends BaseBasicBolt{
  /**
   * 
   */
  private static final long serialVersionUID = 1L;
  @Override
  public void execute(Tuple tuple, BasicOutputCollector collector) {
    // 接收到一个句子
    String sentence = tuple.getString(0);
    // 把句子切割为单词
    StringTokenizer iter = new StringTokenizer(sentence);
    // 发送每一个单词
    while (iter.hasMoreElements()) {
      collector.emit(new Values(iter.nextToken()));
    }
  }
  @Override
  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    // 定义一个字段
    declarer.declare(new Fields("word"));
  }
} 4)WordCountBolt:(这里的bolt相当于mapreduce中的reduce函数)
package cn.edu.nuc.StormTest.wordcount;
import java.util.HashMap;
import java.util.Map;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordCountBolt extends BaseBasicBolt{
  /**
   * 
   */
  private static final long serialVersionUID = 1L;
  Map<String, Integer> counts = new HashMap<String, Integer>();
  @Override
  public void execute(Tuple tuple, BasicOutputCollector collector) {
    // 接收一个单词
    String word = tuple.getString(0);
    // 获取该单词对应的计数
    Integer count = counts.get(word);
    if (count == null)
      count = 0;
    // 计数增加
    count++;
    // 将单词和对应的计数加入map中
    counts.put(word, count);
    System.out.println("hello word!");
    System.out.println(word + "  " + count);
    // 发送单词和计数(分别对应字段word和count)
    collector.emit(new Values(word, count));
  }
  @Override
  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    // 定义两个字段word和count
    declarer.declare(new Fields("word", "count"));
  }
} 5)TopoMain:(任务提交入口类,提供cluster和Local两种运行模式,在本地调试,可以使用local模式) 
package cn.edu.nuc.StormTest.wordcount;
import cn.edu.nuc.StormTest.WordCountTopolopgyAllInJava.WordCount;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;
public class TopoMain {
    public static void main(String[] args) throws Exception {  
        TopologyBuilder builder = new TopologyBuilder();   
        builder.setSpout("spout", new RandomSentenceSpout());  
        builder.setBolt("split", new SplitSentenceBolt()).shuffleGrouping("spout"); 
        builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split",new Fields("word"));
        Config conf = new Config();  
        conf.setDebug(false); 
        if (args != null && args.length > 0) {  
            conf.setNumWorkers(3);  
            StormSubmitter.submitTopology(args[0], conf, builder.createTopology());  
        } else {  
            LocalCluster cluster = new LocalCluster();  
            cluster.submitTopology("wordcount", conf, builder.createTopology());  
            Utils.sleep(3000);  
            cluster.killTopology("wordcount");  
            cluster.shutdown();  
        }  
    }  
} 开发完毕后,在eclipse点击运行,可以看到:
7013 [Thread-34-count] INFO  b.s.d.executor - Prepared bolt count:(10)
7021 [Thread-14-count] INFO  b.s.d.executor - Preparing bolt count:(2)
7021 [Thread-36-split] INFO  b.s.d.executor - Preparing bolt split:(14)
7022 [Thread-36-split] INFO  b.s.d.executor - Prepared bolt split:(14)
7022 [Thread-14-count] INFO  b.s.d.executor - Prepared bolt count:(2)
hello word!
the  1
hello word!
cow  1
hello word!
jumped  1
hello word!
the  2
hello word!
over  1
hello word!
moon  1 2、上面使用的是继承方式,下面用接口的方式:
1)WordRead:(spout)
package cn.edu.nuc.StormTest.wordcount1;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
public class WordReader implements IRichSpout {
    private static final long serialVersionUID = 1L;  
    private SpoutOutputCollector collector;  
    private FileReader fileReader;  
    private boolean completed = false;  
  
    public boolean isDistributed() {  
        return false;  
    }  
    /** 
     * 这是第一个方法,里面接收了三个参数,第一个是创建Topology时的配置, 
     * 第二个是所有的Topology数据,第三个是用来把Spout的数据发射给bolt 
     * **/  
    public void open(Map conf, TopologyContext context,  
            SpoutOutputCollector collector) {  
        try {  
            //获取创建Topology时指定的要读取的文件路径  
            this.fileReader = new FileReader(conf.get("wordsFile").toString());  
        } catch (FileNotFoundException e) {  
            throw new RuntimeException("Error reading file ["  
                    + conf.get("wordFile") + "]");  
        }  
        //初始化发射器  
        this.collector = collector;  
  
    }  
    /** 
     * 这是Spout最主要的方法,在这里我们读取文本文件,并把它的每一行发射出去(给bolt) 
     * 这个方法会不断被调用,为了降低它对CPU的消耗,当任务完成时让它sleep一下 
     * **/  
    public void nextTuple() {  
        if (completed) {  
            try {  
                Thread.sleep(1000);  
            } catch (InterruptedException e) {  
                // Do nothing  
            }  
            return;  
        }  
        String str;  
        // Open the reader  
        BufferedReader reader = new BufferedReader(fileReader);  
        try {  
            // Read all lines  
            while ((str = reader.readLine()) != null) {  
                /** 
                 * 发射每一行,Values是一个ArrayList的实现 
                 */  
                this.collector.emit(new Values(str), str);  
            }  
        } catch (Exception e) {  
            throw new RuntimeException("Error reading tuple", e);  
        } finally {  
            completed = true;  
        }  
  
    }  
    public void declareOutputFields(OutputFieldsDeclarer declarer) {  
        declarer.declare(new Fields("line"));  
  
    }  
    public void close() {  
        // TODO Auto-generated method stub  
    }  
      
    public void activate() {  
        // TODO Auto-generated method stub  
  
    }  
    public void deactivate() {  
        // TODO Auto-generated method stub  
  
    }  
    public void ack(Object msgId) {  
        System.out.println("OK:" + msgId);  
    }  
    public void fail(Object msgId) {  
        System.out.println("FAIL:" + msgId);  
  
    }  
    public Map<String, Object> getComponentConfiguration() {  
        // TODO Auto-generated method stub  
        return null;  
    }  
}2)WordNormalizer:(bolt,相当于map)
package cn.edu.nuc.StormTest.wordcount1;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordNormalizer implements IRichBolt{
    /**
     * 
     */
    private static final long serialVersionUID = 1L;
    private OutputCollector collector;  
    
    public void prepare(Map stormConf, TopologyContext context,  
            OutputCollector collector) {  
        this.collector = collector;  
    }  
    
    /**这是bolt中最重要的方法,每当接收到一个tuple时,此方法便被调用 
     * 这个方法的作用就是把文本文件中的每一行切分成一个个单词,并把这些单词发射出去(给下一个bolt处理) 
     * **/  
    public void execute(Tuple input) {  
        String sentence = input.getString(0);  
        String[] words = sentence.split(" ");  
        for (String word : words) {  
            word = word.trim();  
            if (!word.isEmpty()) {  
                word = word.toLowerCase();  
                // Emit the word  
                List a = new ArrayList();  
                a.add(input);  
                collector.emit(a, new Values(word));  
            }  
        }  
        //确认成功处理一个tuple  
        collector.ack(input);  
    }  
    public void declareOutputFields(OutputFieldsDeclarer declarer) {  
        declarer.declare(new Fields("word"));  
  
    }  
    public void cleanup() {  
        // TODO Auto-generated method stub  
  
    }  
    public Map<String, Object> getComponentConfiguration() {  
        // TODO Auto-generated method stub  
        return null;  
    }  
}3)WordCount:(bolt,相当于reduce)
package cn.edu.nuc.StormTest.wordcount1;
import java.util.HashMap;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
public class WordCounter implements IRichBolt{
    /**
     * 
     */
    private static final long serialVersionUID = 1L;
    Integer id;  
    String name;  
    Map<String, Integer> counters;  
    private OutputCollector collector;  
  
    public void prepare(Map stormConf, TopologyContext context,  
            OutputCollector collector) {  
        this.counters = new HashMap<String, Integer>();  
        this.collector = collector;  
        this.name = context.getThisComponentId();  
        this.id = context.getThisTaskId();  
  
    }  
    public void execute(Tuple input) {  
        String str = input.getString(0);  
        if (!counters.containsKey(str)) {  
            counters.put(str, 1);  
        } else {  
            Integer c = counters.get(str) + 1;  
            counters.put(str, c);  
        }  
        // 确认成功处理一个tuple  
        collector.ack(input);  
    }  
    /** 
     * Topology执行完毕的清理工作,比如关闭连接、释放资源等操作都会写在这里 
     * 因为这只是个Demo,我们用它来打印我们的计数器 
     * */  
    public void cleanup() {  
        System.out.println("-- Word Counter [" + name + "-" + id + "] --");  
        for (Map.Entry<String, Integer> entry : counters.entrySet()) {  
            System.out.println(entry.getKey() + ": " + entry.getValue());  
        }  
        counters.clear();  
    }  
    public void declareOutputFields(OutputFieldsDeclarer declarer) {  
        // TODO Auto-generated method stub  
  
    }  
    public Map<String, Object> getComponentConfiguration() {  
        // TODO Auto-generated method stub  
        return null;  
    }  
}4)主函数:
package cn.edu.nuc.StormTest.wordcount1;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;
public class WordCountTopologyMain {
    public static void main(String[] args) throws InterruptedException {  
        //定义一个Topology  
        TopologyBuilder builder = new TopologyBuilder();  
        builder.setSpout("word-reader",new WordReader(),1);  
        builder.setBolt("word-normalizer", new WordNormalizer()).shuffleGrouping("word-reader");  
        builder.setBolt("word-counter", new WordCounter(),2).fieldsGrouping("word-normalizer", new Fields("word"));  
        //配置  
        Config conf = new Config();  
        conf.put("wordsFile", "d:/test.txt");  
        conf.setDebug(false);  
        //提交Topology  
        conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);  
        //创建一个本地模式cluster  
        LocalCluster cluster = new LocalCluster();  
        cluster.submitTopology("Getting-Started-Toplogie", conf,builder.createTopology());  
        Utils.sleep(3000);  
        cluster.killTopology("Getting-Started-Toplogie");  
        cluster.shutdown();  
    }  
}                










