insert api的数据结构
一个完整的insert例子:
import numpy as np
from pymilvus import (
    connections,
    FieldSchema, CollectionSchema, DataType,
    Collection,
)
num_entities, dim = 10, 3
print("start connecting to Milvus")
connections.connect("default", host="192.168.230.71", port="19530")
fields = [
    FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),
    FieldSchema(name="book_id", dtype=DataType.INT64),
    FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")
print("Create collection `hello_milvus`")
hello_milvus = Collection("hello_milvus", schema, consistency_level="Eventually",shards_num=1)
print("Start inserting entities")
rng = np.random.default_rng(seed=19530)
entities = [
    [i for i in range(num_entities)],  # field book_id
    rng.random((num_entities, dim)),    # field embeddings
]
insert_result = hello_milvus.insert(entities)
hello_milvus.flush()
InsertRequest数据结构:
type InsertRequest struct {
	Base                 *commonpb.MsgBase
	DbName               string
	CollectionName       string
	PartitionName        string
	FieldsData           []*schemapb.FieldData
	HashKeys             []uint32
	NumRows              uint32
	XXX_NoUnkeyedLiteral struct{}
	XXX_unrecognized     []byte
	XXX_sizecache        int32
}
FieldsData是一个数组,如果insert有3列,则数组长度为3,按照插入顺序。
FieldData数据结构:
type FieldData struct {
	Type      DataType 
	FieldName string   
	// Types that are valid to be assigned to Field:
	//
	//	*FieldData_Scalars
	//	*FieldData_Vectors
	Field                isFieldData_Field
	FieldId              int64
	IsDynamic            bool
	XXX_NoUnkeyedLiteral struct{}
	XXX_unrecognized     []byte
	XXX_sizecache        int32
}
isFieldData_Field是一个接口:
type isFieldData_Field interface {
	isFieldData_Field()
}
它有2个实现:FieldData_Scalars和FieldData_Vectors。
type FieldData_Scalars struct {
	Scalars *ScalarField
}
type FieldData_Vectors struct {
	Vectors *VectorField
}
FieldData_Scalars存储标量数据,FieldData_Vectors存储向量数据。
ScalarField数据结构:
type ScalarField struct {
	// Types that are valid to be assigned to Data:
	//
	//	*ScalarField_BoolData
	//	*ScalarField_IntData
	//	*ScalarField_LongData
	//	*ScalarField_FloatData
	//	*ScalarField_DoubleData
	//	*ScalarField_StringData
	//	*ScalarField_BytesData
	//	*ScalarField_ArrayData
	//	*ScalarField_JsonData
	Data                 isScalarField_Data
	XXX_NoUnkeyedLiteral struct{}
	XXX_unrecognized     []byte
	XXX_sizecache        int32
}
isScalarField_Data是一个接口。
type isScalarField_Data interface {
	isScalarField_Data()
}
isScalarField_Data的实现有9个:
- ScalarField_BoolData
- ScalarField_IntData
- ScalarField_LongData
- ScalarField_FloatData
- ScalarField_DoubleData
- ScalarField_StringData
- ScalarField_BytesData
- ScalarField_ArrayData
- ScalarField_JsonData
以ScalarField_LongData为例:
type ScalarField_LongData struct {
	LongData *LongArray
}
type LongArray struct {
	Data                 []int64
	XXX_NoUnkeyedLiteral struct{}
	XXX_unrecognized     []byte
	XXX_sizecache        int32
}
VectorField数据结构:
type VectorField struct {
	Dim int64
	// Types that are valid to be assigned to Data:
	//
	//	*VectorField_FloatVector
	//	*VectorField_BinaryVector
	//	*VectorField_Float16Vector
	Data                 isVectorField_Data
	XXX_NoUnkeyedLiteral struct{}
	XXX_unrecognized     []byte
	XXX_sizecache        int32
}
isVectorField_Data是一个接口。
type isVectorField_Data interface {
	isVectorField_Data()
}
isVectorField_Data有3种实现:
- VectorField_FloatVector
- VectorField_BinaryVector
- VectorField_Float16Vector
以VectorField_FloatVector为例:
type VectorField_FloatVector struct {
	FloatVector *FloatArray
}
type FloatArray struct {
	Data                 []float32
	XXX_NoUnkeyedLiteral struct{}
	XXX_unrecognized     []byte
	XXX_sizecache        int32
}
案例
向hello_milvus插入10个3维向量。
num_entities, dim = 10, 3
rng = np.random.default_rng(seed=19530)
entities = [
    [i for i in range(num_entities)],
    rng.random((num_entities, dim)), 
]
insert_result = hello_milvus.insert(entities)


FloatVector是一个长度为30的float32数组,插入的是10个3维向量,1个向量是3个float32,在这里展开了。









