💥1 概述
该文讲解一种基于候选故障频率优化克(IESCFFOgram)的改进包络频谱的特征自适应方法,用于从频谱相干性(SCoh)中识别信息 频谱频段,以进行轴承故障诊断。在新方法中,根据SCoh的局部特征自动识别候选故障频率(CFF),而不是标称故障特性频率(FCF), 并进一步用于指导信息频段的选择。 这种新方法完全摆脱了对FCF或稀疏性指标的依赖,可以通过 挖掘隐藏在SCoh平面中的故障信息,自适应地生成诊断IES。 因此,所提出的IESCFFOgram适用于在没有准确FCF的情况下滚动轴承的故障识别。还提供用于估计光谱相关性(或光谱相干性)的快速算法。
 用于检测和分析循环平稳信号。
📚2 运行结果

 
 
 
 
 
部分代码:
%% Load Simlated Inner race fault signal
 load('SimInner');
 Sigplot = SimInner;
%% Basic parameters
 Fs = 12800*2;     % Sampling Frequency
 N = 1*Fs ;        % Sampling Length
 t  = 0 : 1/Fs : (N-1)/Fs ;  % Time
 f_m = 142 ;       % Bearing fault charatersitic fraquency
 f_shaft = 26;
%% Plot the raw signal components and the frequency spectrum of the mixed signal
 % Frequency spectrum of the mixed siganl
 nfft = 2*ceil(length(Sigplot(:,5))/2); Freraw = Fs*(0:nfft/2-1)/nfft;
 env = Sigplot(:,5);  
 % env = abs(hilbert(Sigplot(:,5))); 
 Han = hanning(length(env)); Han = Han(:); 
 EnvSpec = abs(fft(((env-mean(env)).^1).*Han,nfft)); 
 EnvSpec = EnvSpec./max(EnvSpec);
 EnvSpec(nfft/2+1:end) = []; 
% Figure
 figure(1)
 subplotnum_1 = 3;
 subplotnum_2 = 2; 
 leftleave = 0.067;
 upleave = 0.005;
 downleave = 0.082;
 step_1 = (1-0-upleave)/subplotnum_1;
 step_2 = 1/subplotnum_2;
 plotheight = step_1*0.70; 
 plotwidth = step_2*0.83;   
 str = {'(a)','(b)','(c)','(d)','(e)','(f)'};
 set (gcf,'unit','centimeters','Position',[12 15 14 8.5], 'color','w'); % 脥录脝卢脦禄脰脙 麓贸脨隆
 for i = 1 : subplotnum_1
     for j = 1 : subplotnum_2
         if (i-1)*2+j <6
             plotx = t';
             ploty = Sigplot( : , (i-1)*2+j  );
         else
             plotx =  Freraw/1000;
             ploty = EnvSpec*0.3;
         end
         subplot(subplotnum_1,subplotnum_2, (i-1)*subplotnum_2+j)
         plot( plotx , ploty, 'b' );     % ylabel('Amplitude');
         set(gca,'unit','normalized','Position',[leftleave+(j-1)*step_2   downleave+(subplotnum_1-i)*step_1  plotwidth*1 plotheight*1]);
         figure_FontSize = 7; set(gca,'Fontsize',figure_FontSize,'Fontname','Times New Roman');
         if (i-1)*2+j  == 1
             set(gca,'ytick',[-1 0 1]); set(gca,'ylim',[-1  1]);
             yt = 1;ys = 0;
         elseif (i-1)*2+j  == 2
             set(gca,'ytick',[-2 :2: 2]); set(gca,'ylim',[-2  2]);
             yt = 2;ys = 0;
         elseif (i-1)*2+j  == 3
             set(gca,'ytick',[-0.8 0.4 1.6]); set(gca,'ylim',[-0.8  1.6]);
             yt = 1.6;ys = 0.4;
         elseif (i-1)*2+j  == 4
             set(gca,'ytick',[-3 0 3]); set(gca,'ylim',[-3  3]);
             yt = 3; ys = 0;
         elseif (i-1)*2+j  == 5
             set(gca,'ytick',[-4 0 4]); set(gca,'ylim',[-4  4]);
             yt = 4; ys = 0;   
         elseif (i-1)*2+j  == 6
             set(gca,'ytick',[0 :0.1 : 0.3]); set(gca,'ylim',[0  0.3]);
             yt = 0.3; ys = 0.15;
         end
         if (i-1)*2+j  < 6
             set(gca,'xtick',[0: 0.2: 1]); set(gca,'xlim',[0  1]);
              xlabel('Time [s]');  
              ylabel('Amplitude','Position',[-0.10*1 ys]);
              xt = -0.15*1; 
         else
             set(gca,'xtick',[0: 1: Fs/2/1000]); set(gca,'xlim',[0 Fs/2/1000]);
             xlabel('Frequency [kHz]');
             ylabel('Amplitude','Position',[-0.10*Fs/2/1000 ys]);
             xt = -0.15*Fs/2/1000;
         end
         text(xt,yt,str{(i-1)*2+j},'Fontname','Times New Roman','FontSize',8,'FontWeight','bold')
🎉3 参考文献
[1]Yao Cheng, Shengbo Wang, Bingyan Chen, Guiming Mei, Weihua Zhang, Han Peng, Guangrong Tian, "An Improved Envelope Spectrum via Candidate Fault Frequency Optimization-gram for Bearing Fault Diagnosis", Journal of Sound and Vibration,Elsevier, 2022.
[2]徐秀芳,徐丹妍,徐森,郭乃瑄,许贺洋.一种结合谱聚类与关联规则的轴承故障诊断方法[J].计算机测量与控制,2023,31(01):51-58.DOI:10.16526/j.cnki.11-4762/tp.2023.01.008.










