基于opencv-Python小车循线学习笔记,pid
 加入摄像头模块,让小车实现自动循迹行驶
 思路为:摄像头读取图像,进行二值化,将白色的赛道凸显出来
 选择下方的一行像素,黑色为0,白色为255
 找到白色值的中点
 目标中点与标准中点(320)进行比较得出偏移量
 根据偏移量,采用PID控制器来控制小车左右轮的转速
# coding:utf-8
import RPi.GPIO as gpio
 import time
 import cv2
 import numpy as np
def sign(x):
     if x>0:
         return 1.0
     else:
         return -1.0
# 定义引脚
 pin1 = 16
 #pin2 = 12
 pin3 = 22
 #pin4 = 18
# 设置GPIO口为BOARD编号规范
 gpio.setmode(gpio.BOARD)
# 设置GPIO口为输出
 gpio.setup(pin1, gpio.OUT)
 #gpio.setup(pin2, gpio.OUT)
 gpio.setup(pin3, gpio.OUT)
 #gpio.setup(pin4, gpio.OUT)
# 设置PWM波,频率为500Hz
 pwm1 = gpio.PWM(pin1, 500)
 #pwm2 = gpio.PWM(pin2, 500)
 pwm3 = gpio.PWM(pin3, 500)
 #pwm4 = gpio.PWM(pin4, 500)
# pwm波控制初始化
 pwm1.start(0)
 #pwm2.start(0)
 pwm3.start(0)
 #pwm4.start(0)
# center定义
 center_now = 320
 # 打开摄像头,图像尺寸640*480(长*高),opencv存储值为480*640(行*列)
 cap = cv2.VideoCapture(0)
# PID 初始数据
 error = [0.0] * 3
 adjust = [0.0] * 3
 # PID 参数配置
 kp = 1.5
 ki = 0.4
 kd = 0.1
 target = 320
while (1):
     ret, frame = cap.read()
     # 转化为灰度图
     gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
     # 大津法二值化
     retval, dst = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
     # 膨胀,白区域变大
     dst = cv2.dilate(dst, None, iterations=2)
     # # 腐蚀,白区域变小
     # dst = cv2.erode(dst, None, iterations=6)
    # 单看第400行的像素值s
     color = dst[400]
     # 找到白色的像素点个数
     white_count = np.sum(color == 255)
     # 找到白色的像素点索引
     white_index = np.where(color == 255)
    # 防止white_count=0的报错
     if white_count == 0:
         white_count = 1
    # 找到黑色像素的中心点位置
     center_now = (white_index[0][white_count - 1] + white_index[0][0]) / 2
    # 计算出center_now与标准中心点的偏移量
     direction = center_now - 320
print(direction)
    # 停止
     if abs(direction) > 250:
         pwm1.ChangeDutyCycle(0)
        # pwm2.ChangeDutyCycle(0)
         pwm3.ChangeDutyCycle(0)
       #  pwm4.ChangeDutyCycle(0)
    # 更新PID误差
     error[0] = error[1]
     error[1] = error[2]
     error[2] = center_now - target
    # 更新PID输出(增量式PID表达式)
     adjust[0] = adjust[1]
     adjust[1] = adjust[2]
     # adjust(k+2) = adjust(k+1) + kp * (e(k+2) - e(k+1)) + ki * e(k+2) + kd * (e(k+2)-2*e(k+1)+e(k))
     adjust[2] = adjust[1] \
         + kp*(error[2] - error[1]) \
         + ki*error[2] \
         + kd*(error[2] - 2*error[1] + error[0]); 
    # 饱和输出限制在70绝对值之内
     if abs(adjust[2]) > 70:
         adjust[2] = sign(adjust[2]) * 70
# 执行PID
    # 右转
     elif adjust[2] > 0:
         pwm1.ChangeDutyCycle(30+ adjust[2])
        # pwm2.ChangeDutyCycle(0)
         pwm3.ChangeDutyCycle(30)
       #  pwm4.ChangeDutyCycle(0)
    # 左转
     elif adjust[2] < 0:
         pwm1.ChangeDutyCycle(30)
        # pwm2.ChangeDutyCycle(0)
         pwm3.ChangeDutyCycle(30 + abs(adjust[2]))
        # pwm4.ChangeDutyCycle(0)
    if cv2.waitKey(1) & 0xFF == ord('q'):
         break
     else:
         time.sleep(0.05)
# 释放清理
 cap.release()
 cv2.destroyAllWindows()
 pwm1.stop()
 #pwm2.stop()
 pwm3.stop()
 #pwm4.stop()
 gpio.cleanup()
 ————————————————










