5.Spring Data Elasticsearch
Elasticsearch提供的Java客户端有一些不太方便的地方:
- 很多地方需要拼接Json字符串,在java中拼接字符串有多恐怖你应该懂的
- 需要自己把对象序列化为json存储
- 查询到结果也需要自己反序列化为对象
因此,我们这里就不讲解原生的Elasticsearch客户端API了。
而是学习Spring提供的套件:Spring Data Elasticsearch。
5.1.简介
Spring Data Elasticsearch是Spring Data项目下的一个子模块。
查看 Spring Data的官网:http://projects.spring.io/spring-data/

Spring Data 的使命是给各种数据访问提供统一的编程接口,不管是关系型数据库(如MySQL),还是非关系数据库(如Redis),或者类似Elasticsearch这样的索引数据库。从而简化开发人员的代码,提高开发效率。
包含很多不同数据操作的模块:

Spring Data Elasticsearch的页面:https://projects.spring.io/spring-data-elasticsearch/

特征:
- 支持Spring的基于@Configuration的java配置方式,或者XML配置方式
- 提供了用于操作ES的便捷工具类ElasticsearchTemplate。包括实现文档到POJO之间的自动智能映射。
- 利用Spring的数据转换服务实现的功能丰富的对象映射
- 基于注解的元数据映射方式,而且可扩展以支持更多不同的数据格式
- 根据持久层接口自动生成对应实现方法,无需人工编写基本操作代码(类似mybatis,根据接口自动得到实现)。当然,也支持人工定制查询
5.2.创建Demo工程
新建一个demo,学习Elasticsearch


pom依赖:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.zq.demo</groupId>
    <artifactId>elasticsearch</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>
    <name>elasticsearch</name>
    <description>Demo project for Spring Boot</description>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.0.2.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <java.version>1.8</java.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>
</project>
application.yml文件配置:
spring:
  data:
    elasticsearch:
      cluster-name: elasticsearch
      cluster-nodes: 192.168.56.101:9300
5.3.实体类及注解
首先我们准备好实体类:
public class Item {
    Long id;
    String title; //标题
    String category;// 分类
    String brand; // 品牌
    Double price; // 价格
    String images; // 图片地址
}
Spring Data通过注解来声明字段的映射属性,有下面的三个注解:
- 
@Document作用在类,标记实体类为文档对象,一般有两个属性- indexName:对应索引库名称
- type:对应在索引库中的类型
- shards:分片数量,默认5
- replicas:副本数量,默认1
 
- 
@Id作用在成员变量,标记一个字段作为id主键
- 
@Field作用在成员变量,标记为文档的字段,并指定字段映射属性:- type:字段类型,取值是枚举:FieldType
- index:是否索引,布尔类型,默认是true
- store:是否存储,布尔类型,默认是false
- analyzer:分词器名称
 
示例:
@Document(indexName = "item",type = "docs", shards = 1, replicas = 0)
public class Item {
    @Id
    private Long id;
    
    @Field(type = FieldType.Text, analyzer = "ik_max_word")
    private String title; //标题
    
    @Field(type = FieldType.Keyword)
    private String category;// 分类
    
    @Field(type = FieldType.Keyword)
    private String brand; // 品牌
    
    @Field(type = FieldType.Double)
    private Double price; // 价格
    
    @Field(index = false, type = FieldType.Keyword)
    private String images; // 图片地址
}
5.4.Template索引操作
5.4.1.创建索引和映射

ElasticsearchTemplate中提供了创建索引的API:

可以根据类的信息自动生成,也可以手动指定indexName和Settings
映射相关的API:

可以根据类的字节码信息(注解配置)来生成映射,或者手动编写映射
我们这里采用类的字节码信息创建索引并映射:
@RunWith(SpringRunner.class)
@SpringBootTest(classes = ZqElasticsearchApplication.class)
public class IndexTest {
    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;
    @Test
    public void testCreate(){
        // 创建索引,会根据Item类的@Document注解信息来创建
        elasticsearchTemplate.createIndex(Item.class);
        // 配置映射,会根据Item类中的id、Field等字段来自动完成映射
        elasticsearchTemplate.putMapping(Item.class);
    }
}
结果:
GET /item
{
  "item": {
    "aliases": {},
    "mappings": {
      "docs": {
        "properties": {
          "brand": {
            "type": "keyword"
          },
          "category": {
            "type": "keyword"
          },
          "images": {
            "type": "keyword",
            "index": false
          },
          "price": {
            "type": "double"
          },
          "title": {
            "type": "text",
            "analyzer": "ik_max_word"
          }
        }
      }
    },
    "settings": {
      "index": {
        "refresh_interval": "1s",
        "number_of_shards": "1",
        "provided_name": "item",
        "creation_date": "1525405022589",
        "store": {
          "type": "fs"
        },
        "number_of_replicas": "0",
        "uuid": "4sE9SAw3Sqq1aAPz5F6OEg",
        "version": {
          "created": "6020499"
        }
      }
    }
  }
}
5.3.2.删除索引
删除索引的API:

可以根据类名或索引名删除。
示例:
@Test
public void deleteIndex() {
    esTemplate.deleteIndex("heima");
}
结果:

5.4.Repository文档操作
Spring Data 的强大之处,就在于你不用写任何DAO处理,自动根据方法名或类的信息进行CRUD操作。只要你定义一个接口,然后继承Repository提供的一些子接口,就能具备各种基本的CRUD功能。
只需要定义接口,然后继承它就OK了。
public interface ItemRepository extends ElasticsearchRepository<Item,Long> {
}
来看下Repository的继承关系:

有一个ElasticsearchRepository接口:

5.4.1.新增文档
@Autowired
private ItemRepository itemRepository;
@Test
public void index() {
    Item item = new Item(1L, "小米手机7", " 手机",
                         "小米", 3499.00, "http://image.zq.com/13123.jpg");
    itemRepository.save(item);
}
去页面查询看看:
GET /item/_search
结果:
{
  "took": 14,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "item",
        "_type": "docs",
        "_id": "1",
        "_score": 1,
        "_source": {
          "id": 1,
          "title": "小米手机7",
          "category": " 手机",
          "brand": "小米",
          "price": 3499,
          "images": "http://image.zq.com/13123.jpg"
        }
      }
    ]
  }
}
5.4.2.批量新增
代码:
@Test
public void indexList() {
    List<Item> list = new ArrayList<>();
    list.add(new Item(2L, "坚果手机R1", " 手机", "锤子", 3699.00, "http://image.zq.com/123.jpg"));
    list.add(new Item(3L, "华为META10", " 手机", "华为", 4499.00, "http://image.zq.com/3.jpg"));
    // 接收对象集合,实现批量新增
    itemRepository.saveAll(list);
}
再次去页面查询:
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
      {
        "_index": "item",
        "_type": "docs",
        "_id": "2",
        "_score": 1,
        "_source": {
          "id": 2,
          "title": "坚果手机R1",
          "category": " 手机",
          "brand": "锤子",
          "price": 3699,
          "images": "http://image.zq.com/13123.jpg"
        }
      },
      {
        "_index": "item",
        "_type": "docs",
        "_id": "3",
        "_score": 1,
        "_source": {
          "id": 3,
          "title": "华为META10",
          "category": " 手机",
          "brand": "华为",
          "price": 4499,
          "images": "http://image.zq.com/13123.jpg"
        }
      },
      {
        "_index": "item",
        "_type": "docs",
        "_id": "1",
        "_score": 1,
        "_source": {
          "id": 1,
          "title": "小米手机7",
          "category": " 手机",
          "brand": "小米",
          "price": 3499,
          "images": "http://image.zq.com/13123.jpg"
        }
      }
    ]
  }
}
5.4.3.修改文档
修改和新增是同一个接口,区分的依据就是id,这一点跟我们在页面发起PUT请求是类似的。
5.4.4.基本查询
ElasticsearchRepository提供了一些基本的查询方法:

查询所有:
@Test
public void testFind(){
    // 查询全部,并安装价格降序排序
    Iterable<Item> items = this.itemRepository.findAll(Sort.by(Sort.Direction.DESC, "price"));
    items.forEach(item-> System.out.println(item));
}
结果:

5.4.5.自定义方法
Spring Data 的另一个强大功能,是根据方法名称自动实现功能。
比如:你的方法名叫做:findByTitle,那么它就知道你是根据title查询,然后自动帮你完成,无需写实现类。
当然,方法名称要符合一定的约定:
| Keyword | Sample | Elasticsearch Query String | 
|---|---|---|
| And | findByNameAndPrice | {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}} | 
| Or | findByNameOrPrice | {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}} | 
| Is | findByName | {"bool" : {"must" : {"field" : {"name" : "?"}}}} | 
| Not | findByNameNot | {"bool" : {"must_not" : {"field" : {"name" : "?"}}}} | 
| Between | findByPriceBetween | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} | 
| LessThanEqual | findByPriceLessThan | {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} | 
| GreaterThanEqual | findByPriceGreaterThan | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}} | 
| Before | findByPriceBefore | {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} | 
| After | findByPriceAfter | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}} | 
| Like | findByNameLike | {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}} | 
| StartingWith | findByNameStartingWith | {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}} | 
| EndingWith | findByNameEndingWith | {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}} | 
| Contains/Containing | findByNameContaining | {"bool" : {"must" : {"field" : {"name" : {"query" : "**?**","analyze_wildcard" : true}}}}} | 
| In | findByNameIn(Collection<String>names) | {"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}} | 
| NotIn | findByNameNotIn(Collection<String>names) | {"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}} | 
| Near | findByStoreNear | Not Supported Yet ! | 
| True | findByAvailableTrue | {"bool" : {"must" : {"field" : {"available" : true}}}} | 
| False | findByAvailableFalse | {"bool" : {"must" : {"field" : {"available" : false}}}} | 
| OrderBy | findByAvailableTrueOrderByNameDesc | {"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}} | 
例如,我们来按照价格区间查询,定义这样的一个方法:
public interface ItemRepository extends ElasticsearchRepository<Item,Long> {
    /**
     * 根据价格区间查询
     * @param price1
     * @param price2
     * @return
     */
    List<Item> findByPriceBetween(double price1, double price2);
}
然后添加一些测试数据:
@Test
public void indexList() {
    List<Item> list = new ArrayList<>();
    list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00, "http://image.zq.com/13123.jpg"));
    list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00, "http://image.zq.com/13123.jpg"));
    list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00, "http://image.zq.com/13123.jpg"));
    list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00, "http://image.zq.com/13123.jpg"));
    list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00, "http://image.zq.com/13123.jpg"));
    // 接收对象集合,实现批量新增
    itemRepository.saveAll(list);
}
不需要写实现类,然后我们直接去运行:
@Test
public void queryByPriceBetween(){
    List<Item> list = this.itemRepository.findByPriceBetween(2000.00, 3500.00);
    for (Item item : list) {
        System.out.println("item = " + item);
    }
}
结果:

虽然基本查询和自定义方法已经很强大了,但是如果是复杂查询(模糊、通配符、词条查询等)就显得力不从心了。此时,我们只能使用原生查询。
5.5.高级查询
5.5.1.基本查询
先看看基本玩法
@Test
public void testQuery(){
    // 词条查询
    MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "小米");
    // 执行查询
    Iterable<Item> items = this.itemRepository.search(queryBuilder);
    items.forEach(System.out::println);
}
Repository的search方法需要QueryBuilder参数,elasticSearch为我们提供了一个对象QueryBuilders:

QueryBuilders提供了大量的静态方法,用于生成各种不同类型的查询对象,例如:词条、模糊、通配符等QueryBuilder对象。
结果:

elasticsearch提供很多可用的查询方式,但是不够灵活。如果想玩过滤或者聚合查询等就很难了。
5.5.2.自定义查询
先来看最基本的match query:
@Test
public void testNativeQuery(){
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 添加基本的分词查询
    queryBuilder.withQuery(QueryBuilders.matchQuery("title", "小米"));
    // 执行搜索,获取结果
    Page<Item> items = this.itemRepository.search(queryBuilder.build());
    // 打印总条数
    System.out.println(items.getTotalElements());
    // 打印总页数
    System.out.println(items.getTotalPages());
    items.forEach(System.out::println);
}
NativeSearchQueryBuilder:Spring提供的一个查询条件构建器,帮助构建json格式的请求体
Page<item>:默认是分页查询,因此返回的是一个分页的结果对象,包含属性:
- totalElements:总条数
- totalPages:总页数
- Iterator:迭代器,本身实现了Iterator接口,因此可直接迭代得到当前页的数据
- 其它属性:


5.5.4.分页查询
利用NativeSearchQueryBuilder可以方便的实现分页:
@Test
public void testNativeQuery(){
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 添加基本的分词查询
    queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));
    // 初始化分页参数
    int page = 0;
    int size = 3;
    // 设置分页参数
    queryBuilder.withPageable(PageRequest.of(page, size));
    // 执行搜索,获取结果
    Page<Item> items = this.itemRepository.search(queryBuilder.build());
    // 打印总条数
    System.out.println(items.getTotalElements());
    // 打印总页数
    System.out.println(items.getTotalPages());
    // 每页大小
    System.out.println(items.getSize());
    // 当前页
    System.out.println(items.getNumber());
    items.forEach(System.out::println);
}
结果:

可以发现,Elasticsearch中的分页是从第0页开始。
5.5.5.排序
排序也通用通过NativeSearchQueryBuilder完成:
@Test
public void testSort(){
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 添加基本的分词查询
    queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));
    // 排序
    queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
    // 执行搜索,获取结果
    Page<Item> items = this.itemRepository.search(queryBuilder.build());
    // 打印总条数
    System.out.println(items.getTotalElements());
    items.forEach(System.out::println);
}
结果:

5.6.聚合
5.6.1.聚合为桶
桶就是分组,比如这里我们按照品牌brand进行分组:
@Test
public void testAgg(){
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 不查询任何结果
    queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null));
    // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
    queryBuilder.addAggregation(
        AggregationBuilders.terms("brands").field("brand"));
    // 2、查询,需要把结果强转为AggregatedPage类型
    AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
    // 3、解析
    // 3.1、从结果中取出名为brands的那个聚合,
    // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
    StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
    // 3.2、获取桶
    List<StringTerms.Bucket> buckets = agg.getBuckets();
    // 3.3、遍历
    for (StringTerms.Bucket bucket : buckets) {
        // 3.4、获取桶中的key,即品牌名称
        System.out.println(bucket.getKeyAsString());
        // 3.5、获取桶中的文档数量
        System.out.println(bucket.getDocCount());
    }
}
显示的结果:

关键API:
- 
AggregationBuilders:聚合的构建工厂类。所有聚合都由这个类来构建,看看他的静态方法:

- 
AggregatedPage:聚合查询的结果类。它是Page<T>的子接口:
  
AggregatedPage在Page功能的基础上,拓展了与聚合相关的功能,它其实就是对聚合结果的一种封装,大家可以对照聚合结果的JSON结构来看。

而返回的结果都是Aggregation类型对象,不过根据字段类型不同,又有不同的子类表示

我们看下页面的查询的JSON结果与Java类的对照关系:

5.6.2.嵌套聚合,求平均值
代码:
@Test
public void testSubAgg(){
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 不查询任何结果
    queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null));
    // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
    queryBuilder.addAggregation(
        AggregationBuilders.terms("brands").field("brand")
        .subAggregation(AggregationBuilders.avg("priceAvg").field("price")) // 在品牌聚合桶内进行嵌套聚合,求平均值
    );
    // 2、查询,需要把结果强转为AggregatedPage类型
    AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
    // 3、解析
    // 3.1、从结果中取出名为brands的那个聚合,
    // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
    StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
    // 3.2、获取桶
    List<StringTerms.Bucket> buckets = agg.getBuckets();
    // 3.3、遍历
    for (StringTerms.Bucket bucket : buckets) {
        // 3.4、获取桶中的key,即品牌名称  3.5、获取桶中的文档数量
        System.out.println(bucket.getKeyAsString() + ",共" + bucket.getDocCount() + "台");
        // 3.6.获取子聚合结果:
        InternalAvg avg = (InternalAvg) bucket.getAggregations().asMap().get("priceAvg");
        System.out.println("平均售价:" + avg.getValue());
    }
}
结果:

Elasticsearch如何保证数据不丢失
Elasticsearch 与mysql数据同步
ElasticSearch数据同步与无缝迁移
mysql数据实时同步到Elasticsearch
Elasticsearch 与mysql数据同步










