文章目录
- ⛄引言
 - 一、我附近的酒店
 
- ⛅需求分析
 - ⚡源码编写
 
- 二、酒店竞价排名
 
- ⌚需求分析
 - ⏰修改搜索业务
 
- ✅效果图
 - ⛵小结
 
 
⛄引言
本文参考黑马 分布式Elastic search
Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
一、我附近的酒店
⛅需求分析
在酒店列表页的右侧,有一个小地图,点击地图的定位按钮,地图会找到你所在的位置:

点击定位后,会发送给服务端以下请求json

我们要做的事情就是基于这个location坐标,然后按照距离对周围酒店排序。实现思路如下:
- 修改RequestParams参数,接收location字段
 - 修改search方法业务逻辑,如果location有值,添加根据geo_distance排序的功能
 
⚡源码编写
修改实体类
import lombok.Data;
@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
    // 我当前的地理坐标
    private String location;
}距离排序
我们以前学习过排序功能,包括两种:
- 普通字段排序
 - 地理坐标排序
 
地理坐标 DSL 语法如下
GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": "asc"  
    },
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度",
          "order" : "asc",
          "unit" : "km"
      }
    }
  ]
}添加距离排序
@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);
        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);
        // 2.3.排序
        String location = params.getLocation();
        if (location != null && !location.equals("")) {
            request.source().sort(SortBuilders
                                  .geoDistanceSort("location", new GeoPoint(location))
                                  .order(SortOrder.ASC)
                                  .unit(DistanceUnit.KILOMETERS)
                                 );
        }
        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}排序距离展示
重启进行测试:

的却可以实现 我附近的酒店距离排序,但是没有展示距离我们有多远,这个我们应该怎么实现呢?
排序完成后,页面还要获取我附近每个酒店的具体距离值,这个值在响应结果中是独立的:

因此,我们在结果解析阶段,除了解析source部分以外,还要得到sort部分,也就是排序的距离,然后放到响应结果中。
我们要做两件事:
- 修改HotelDoc,添加排序距离字段,用于页面显示
 - 修改HotelService类中的handleResponse方法,添加对sort值的获取
 
添加距离排序字段
import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    // 排序时的 距离值
    private Object distance;
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}修改 handleResponse 方法

重启进行测试

已成功展示距离。
二、酒店竞价排名
需求:让指定的酒店在搜索结果中排名置顶
⌚需求分析
要让指定酒店在搜索结果中排名置顶,效果如图:

页面会给指定的酒店添加广告标记。
那怎样才能让指定的酒店排名置顶呢?
我们之前学习过的function_score查询可以影响算分,算分高了,自然排名也就高了。而function_score包含3个要素:
- 过滤条件:哪些文档要加分
 - 算分函数:如何计算function score
 - 加权方式:function score 与 query score如何运算
 
这里的需求是:让指定酒店排名靠前。因此我们需要给这些酒店添加一个标记,这样在过滤条件中就可以根据这个标记来判断,是否要提高算分。
比如,我们给酒店添加一个字段:isAD,Boolean类型:
- true:是广告
 - false:不是广告
 
这样function_score包含3个要素就很好确定了:
- 过滤条件:判断isAD 是否为true
 - 算分函数:我们可以用最简单暴力的weight,固定加权值
 - 加权方式:可以用默认的相乘,大大提高算分
 
因此,业务的实现步骤包括:
- 给HotelDoc类添加isAD字段,Boolean类型
 - 挑选几个你喜欢的酒店,给它的文档数据添加isAD字段,值为true
 - 修改search方法,添加function score功能,给isAD值为true的酒店增加权重
 
⏰修改搜索业务
添加广告标记
修改实体类
import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    // 加入广告标识
    private Boolean isAD;
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}随便设置几个作为广告置项
POST /hotel/_update/2056105938
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/38609
{
    "doc": {
        "isAD": true
    }
}添加算分函数查询
接下来我们就要修改查询条件了。之前是用的boolean 查询,现在要改成function_socre查询。
function_score查询结构如下:

对应的JavaAPI如下:

我们可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件、算分函数、加权模式了。所以原来的代码依然可以沿用。
加入算分查询
private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
    // 价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }
    // 2.算分控制
    FunctionScoreQueryBuilder functionScoreQuery =
        QueryBuilders.functionScoreQuery(
        // 原始查询,相关性算分的查询
        boolQuery,
        // function score的数组
        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
            // 其中的一个function score 元素
            new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                // 过滤条件
                QueryBuilders.termQuery("isAD", true),
                // 算分函数
                ScoreFunctionBuilders.weightFactorFunction(10)
            )
        });
    request.source().query(functionScoreQuery);
}效果展示

✅效果图

⛵小结
以上就是【Bug 终结者】对 Spring Boot 整合 分布式搜索引擎 Elastic Search 实现 搜索、分页与结果过滤 的简单介绍,ES搜索引擎无疑是最优秀的分布式搜索引擎,使用它,可大大提高项目的灵活、高效性! 技术改变世界!!!










