1. 引入maven依赖
 
<!--simhash算法(文章得相似度依赖)-->
        <dependency>
            <groupId>org.jsoup</groupId>
            <artifactId>jsoup</artifactId>
            <version>1.11.3</version>
        </dependency>
        <dependency>
            <groupId>com.hankcs</groupId>
            <artifactId>hanlp</artifactId>
            <version>portable-1.8.2</version>
        </dependency>
 
2.创建工具类
 
package com.datago.common.utils.similarity;
import com.hankcs.hanlp.seg.common.Term;
import com.hankcs.hanlp.tokenizer.StandardTokenizer;
import org.apache.commons.lang3.StringUtils;
import org.jsoup.Jsoup;
import org.jsoup.safety.Whitelist;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class SimilarityUtils {
    private String tokens; 
    private BigInteger strSimHash;
    private int hashbits; 
    private SimilarityUtils(String tokens, int hashbits) {
        this.tokens = tokens;
        this.hashbits = hashbits;
        this.strSimHash = this.simHash();
    }
    
    private String cleanResume(String content) {
        
        content = Jsoup.clean(content, Whitelist.none());
        content = StringUtils.lowerCase(content);
        String[] strings = {" ", "\n", "\r", "\t", "\\r", "\\n", "\\t", " "};
        for (String s : strings) {
            content = content.replaceAll(s, "");
        }
        return content;
    }
    
    private BigInteger simHash() {
        tokens = cleanResume(tokens); 
        int[] v = new int[this.hashbits];
        List<Term> termList = StandardTokenizer.segment(this.tokens); 
        
        Map<String, Integer> weightOfNature = new HashMap<String, Integer>(); 
        weightOfNature.put("n", 2); 
        Map<String, String> stopNatures = new HashMap<String, String>();
        stopNatures.put("w", ""); 
        int overCount = 5; 
        Map<String, Integer> wordCount = new HashMap<String, Integer>();
        for (Term term : termList) {
            String word = term.word; 
            String nature = term.nature.toString(); 
            
            if (wordCount.containsKey(word)) {
                int count = wordCount.get(word);
                if (count > overCount) {
                    continue;
                }
                wordCount.put(word, count + 1);
            } else {
                wordCount.put(word, 1);
            }
            
            if (stopNatures.containsKey(nature)) {
                continue;
            }
            
            BigInteger t = this.hash(word);
            for (int i = 0; i < this.hashbits; i++) {
                BigInteger bitmask = new BigInteger("1").shiftLeft(i);
                
                
                
                int weight = 1;  
                if (weightOfNature.containsKey(nature)) {
                    weight = weightOfNature.get(nature);
                }
                if (t.and(bitmask).signum() != 0) {
                    
                    v[i] += weight;
                } else {
                    v[i] -= weight;
                }
            }
        }
        BigInteger fingerprint = new BigInteger("0");
        for (int i = 0; i < this.hashbits; i++) {
            if (v[i] >= 0) {
                fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i));
            }
        }
        return fingerprint;
    }
    
    private BigInteger hash(String source) {
        if (source == null || source.length() == 0) {
            return new BigInteger("0");
        } else {
            
            while (source.length() < 3) {
                source = source + source.charAt(0);
            }
            char[] sourceArray = source.toCharArray();
            BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7);
            BigInteger m = new BigInteger("1000003");
            BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract(new BigInteger("1"));
            for (char item : sourceArray) {
                BigInteger temp = BigInteger.valueOf((long) item);
                x = x.multiply(m).xor(temp).and(mask);
            }
            x = x.xor(new BigInteger(String.valueOf(source.length())));
            if (x.equals(new BigInteger("-1"))) {
                x = new BigInteger("-2");
            }
            return x;
        }
    }
    
    private int hammingDistance(SimilarityUtils other) {
        BigInteger m = new BigInteger("1").shiftLeft(this.hashbits).subtract(
                new BigInteger("1"));
        BigInteger x = this.strSimHash.xor(other.strSimHash).and(m);
        int tot = 0;
        while (x.signum() != 0) {
            tot += 1;
            x = x.and(x.subtract(new BigInteger("1")));
        }
        return tot;
    }
 
    public double getSemblance(SimilarityUtils s2) {
        double i = (double) this.hammingDistance(s2);
        return 1 - i / this.hashbits;
    }
    
    public static double getRatio(String inValue, String outValue) {
        SimilarityUtils hash1 = new SimilarityUtils(inValue, 64);
        SimilarityUtils hash2 = new SimilarityUtils(outValue, 64);
        return hash1.getSemblance(hash2);
    }
}
 
3.应用
 
public static void main(String[] args) {
        SimilarityUtils hash1 = new SimilarityUtils("老铁,加个关注呗!!!666", 64);
        SimilarityUtils hash2 = new SimilarityUtils("老铁,加个关注呗!!!6666", 64);
        
        System.out.println(hash1.hammingDistance(hash2));
        
        System.out.println(hash1.getSemblance(hash2));
    }
 
4.控制台输出结果
 
