文章目录
【LeetCode高频SQL50题-基础版】打卡第3天:第16~20题
⛅前言
平均售价
🔒题目

🔑题解
考查知识点:sum()、ifnull()
sum(column):对表中某一列进行求和round(number, n):对number保留n位小数,采用四舍五入的方式ifnull(expression_1, expression_2):如果表达式1为null,则结果为expression_2,如果表达式不为null,则结果为expression_1- 对 null 值的处理
 
这里我选择采用一步一步调整SQL的方式来解题,因为这种方式能够让我们更加清晰的了解SQL的执行过程
1)先做一个左连接
select *
from Prices p left join UnitsSold u on p.product_id = u.product_id;
 
| product_id | start_date | end_date   | price | product_id | purchase_date | units |
| ---------- | ---------- | ---------- | ----- | ---------- | ------------- | ----- |
| 1          | 2019-02-17 | 2019-02-28 | 5     | 1          | 2019-03-01    | 15    |
| 1          | 2019-02-17 | 2019-02-28 | 5     | 1          | 2019-02-25    | 100   |
| 1          | 2019-03-01 | 2019-03-22 | 20    | 1          | 2019-03-01    | 15    |
| 1          | 2019-03-01 | 2019-03-22 | 20    | 1          | 2019-02-25    | 100   |
| 2          | 2019-02-01 | 2019-02-20 | 15    | 2          | 2019-03-22    | 30    |
| 2          | 2019-02-01 | 2019-02-20 | 15    | 2          | 2019-02-10    | 200   |
| 2          | 2019-02-21 | 2019-03-31 | 30    | 2          | 2019-03-22    | 30    |
| 2          | 2019-02-21 | 2019-03-31 | 30    | 2          | 2019-02-10    | 200   |
 
2)从上面的执行结果来看,producet_id 发生了重复,我们采用 group by进行去重
select *
from Prices p left join UnitsSold u on p.product_id = u.product_id
group by p.product_id;
 
| product_id | start_date | end_date   | price | product_id | purchase_date | units |
| ---------- | ---------- | ---------- | ----- | ---------- | ------------- | ----- |
| 1          | 2019-02-17 | 2019-02-28 | 5     | 1          | 2019-03-01    | 15    |
| 2          | 2019-02-01 | 2019-02-20 | 15    | 2          | 2019-03-22    | 30    |
 
3)我们还需要通过按照产品销售日期计算每一个产品的总销售额
select p.product_id, SUM(units * price) as all_price, SUM(units) as all_units 
from Prices p left join UnitsSold u on p.product_id = u.product_id
where u.purchase_date between p.start_date and p.end_date
group by p.product_id;
 
| product_id | all_price | all_units |
| ---------- | --------- | --------- |
| 1          | 800       | 115       |
| 2          | 3900      | 230       |
 
product_id = 1 的计算结果是 800=(100 * 5)+(15 * 20),115=100+15,
4)进行相除,计算平均售价
select p.product_id, round(sum(units * price) / sum(units),2) as average_price
from Prices p left join UnitsSold u on p.product_id = u.product_id
where u.purchase_date between p.start_date and p.end_date
group by p.product_id;
 
| product_id | average_price |
| ---------- | ------------- |
| 1          | 6.96          |
| 2          | 16.96         |
 
5)对于销售额为 null 的商品采用上面的SQL会报错,因为null与其它结果参数运算的结果可能为null,而我们需要的结果是0
select p.product_id, round(ifnull(sum(units * price) / sum(units), 0), 2) as average_price
from Prices p left join UnitsSold u on p.product_id = u.product_id
where u.purchase_date between p.start_date and p.end_date or u.product_id is null
group by p.product_id;
 
注意:
- null与其它数值类型进行运算,结果为null,所以要通过 
ifnull()函数计算过滤 - null不参与聚合函数的计算,为了保障 
sum()函数的求和数量正确需要添加一个条件 or u.product_id is null ,把 UnitsSold表中 null 的列也统计起来,这样记录总数才是正确的,否则记录总数会比真实值小 
项目员工I
🔒题目

🔑题解
- 考察知识点:
左连接、group by、sum、count、round 
1)先进行左连接
select *
from Project p left join Employee e on p.employee_id = e.employee_id; 
 
| project_id | employee_id | employee_id | name   | experience_years |
| ---------- | ----------- | ----------- | ------ | ---------------- |
| 1          | 1           | 1           | Khaled | 3                |
| 1          | 2           | 2           | Ali    | 2                |
| 1          | 3           | 3           | John   | 1                |
| 2          | 1           | 1           | Khaled | 3                |
| 2          | 4           | 4           | Doe    | 2                |
 
2)和目标结果表进行对比,发现还需要对 project_id 进行去重
select *
from Project p left join Employee e on p.employee_id = e.employee_id
group by p.project_id;
 
| project_id | employee_id | employee_id | name   | experience_years |
| ---------- | ----------- | ----------- | ------ | ---------------- |
| 1          | 1           | 1           | Khaled | 3                |
| 2          | 1           | 1           | Khaled | 3                |
 
3)和目标结果表进行对比,发现还需要计算 每一个项目的员工的平均年限,同时需要使用round()函数对平均值进行保留两位小数
一个项目员工的平均年限=项目所有员工的年限/项目员工的数量
select p.project_id, round(sum(e.experience_years)/count(p.project_id), 2) average_years
from Project p left join Employee e on p.employee_id = e.employee_id
group by p.project_id;
 
+-------------+---------------+
| project_id  | average_years |
+-------------+---------------+
| 1           | 2.00          |
| 2           | 2.50          |
+-------------+---------------+
 
各赛事的用户注册率
🔒题目

🔑题解
- 考察知识点:
count、round、group by、order by 
select contest_id , round(count(user_id) * 100/ (select count(*) from users), 2) percentage 
from Register
group by contest_id
order by percentage desc, contest_id
 
查询结果的质量和占比
🔒题目

🔑题解
-  
考察知识点:
count、round、group by、sum、if、avg -  
方式一:
select query_name, round((sum(rating/position)/count(query_name)), 2) quality, round(sum(if(rating < 3, 1, 0)) * 100 / count(*), 2) poor_query_percentage from Queries group by query_name;其中
if(rating < 3, 1, 0)等价于case when rating < 3 then 1 else 0 end -  
方式二:
select query_name, round(avg(rating/position), 2) quality, round(avg(rating < 3)*100, 2) poor_query_percentage from Queries group by query_name;其中
avg(rating < 3)这个表达式的含义是,计算评分小于3占总数的百分比 
备注:这两个SQL,第二个适用 avg 函数的SQL性能更好,因为第一个 SQL 查询中使用了多个聚合函数和条件语句,如 sum、round、if 等,这可能会导致更多的计算和操作,从而影响查询的性能。而第二个 SQL 查询中只使用了两个简单的聚合函数 avg 和 round,没有使用条件语句,所以计算的复杂度较低,查询性能相对较好。
每月交易I
🔒题目

🔑题解
- 考察知识点:
count、sum、data_formate、group by、order by 
select
    date_format(trans_date, "%Y-%m") month,
    country,
    count(*) trans_count,
    count(if(state='approved', 1, null)) approved_count,
    sum(amount) trans_total_amount,
    sum(if(state = 'approved', amount, 0)) approved_total_amount
from Transactions
group by country, month
order by month;
 
还可以换一种写法
select
    left(trans_date, 7) month,
    country,
    count(*) trans_count,
    sum(if(state='approved', 1, 0)) approved_count,
    sum(amount) trans_total_amount,
    sum(if(state = 'approved', amount, 0)) approved_total_amount
from Transactions
group by country, month
order by month;










