文章目录
- 初识elasticsearch
- 索引库操作
- RestClient操作索引库
- RestClient操作文档
- DSL查询文档
- 搜索结果处理
- RestClient查询文档
- 数据聚合
- 自动补全
- 数据同步
- ES集群
初识elasticsearch
了解ES
elasticsearch的作用
例如:
- 在GitHub搜索代码
  
- 在电商网站搜索商品
  
- 在百度搜索答案
  
ELK技术栈
 elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
 
 而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据
 
elasticsearch和lucene
 elasticsearch底层是基于lucene来实现的
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发
 
 elasticsearch的发展历史:
- 2004年Shay Banon基于Lucene开发了Compass
- 2010年Shay Banon 重写了Compass,取名为Elasticsearch
  
为什么不是其他搜索技术?
 目前比较知名的搜索引擎技术排名:
 
 虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
 
倒排索引
正向索引
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
 如果是根据id查询,那么直接走索引,查询速度非常快
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
-  用户搜索数据,条件是title符合 "%手机%"
-  逐行获取数据,比如id为1的数据 
-  判断数据中的title是否符合用户搜索条件 
-  如果符合则放入结果集,不符合则丢弃。回到步骤1 
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难
 
倒排索引
倒排索引中有两个非常重要的概念:
- 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
- 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图:
 
 倒排索引的搜索流程如下(以搜索"华为手机"为例):
- 用户输入条件"华为手机"进行搜索
- 对用户输入内容分词,得到词条:华为、手机
- 拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3
- 拿着文档id到正向索引中查找具体文档
如图:
 
 虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描
正向和倒排
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
-  正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。 
-  而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。 
是不是恰好反过来了?
那么两者方式的优缺点是什么呢?
正向索引:
- 优点: 
  - 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
 
- 缺点: 
  - 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
 
倒排索引:
- 优点: 
  - 根据词条搜索、模糊搜索时,速度非常快
 
- 缺点: 
  - 只能给词条创建索引,而不是字段
- 无法根据字段做排序
 
es的一些概念
文档和字段
elasticsearch是面向 文档(Document) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
 
 而Json文档中往往包含很多的字段(Field),类似于数据库中的列
索引和映射
索引(Index):相同类型的文档的集合
 映射(mapping):索引中文档的字段约束信息,类似表的结构约束
例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
  
因此,我们可以把索引当做是数据库中的表
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束
mysql与elasticsearch
我们统一的把mysql与elasticsearch的概念做一下对比:
| MySQL | Elasticsearch | 说明 | 
|---|---|---|
| Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) | 
| Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 | 
| Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) | 
| Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) | 
| SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD | 
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
-  Mysql:擅长事务类型操作,可以确保数据的安全和一致性 
-  Elasticsearch:擅长海量数据的搜索、分析、计算 
因此在企业中,往往是两者结合使用:
- 对安全性要求较高的写操作,使用mysql实现
- 对查询性能要求较高的搜索需求,使用elasticsearch实现
- 两者再基于某种方式,实现数据的同步,保证一致性
  
安装ES
-  创建网络 
 因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:docker network create es-net
-  加载镜像 
 由于elasticsearch镜像比较大,不建议直接pull,所以我们从官网下载,将其上传到虚拟机中,然后运行命令加载即可:docker load -i es.tar
 同理还有kibana的tar包也需要这样做
-  运行docker命令,部署单点es: docker run -d \ --name es \ -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \ -e "discovery.type=single-node" \ -v es-data:/usr/share/elasticsearch/data \ -v es-plugins:/usr/share/elasticsearch/plugins \ --privileged \ --network es-net \ -p 9200:9200 \ -p 9300:9300 \ elasticsearch:7.12.1命令解释: - -e "cluster.name=es-docker-cluster":设置集群名称
- -e "http.host=0.0.0.0":监听的地址,可以外网访问
- -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
- -e "discovery.type=single-node":非集群模式
- -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
- -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
- -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
- --privileged:授予逻辑卷访问权
- --network es-net:加入一个名为es-net的网络中
- -p 9200:9200:端口映射配置
 
-  在浏览器中输入:http://192.168.1.12:9200 即可看到elasticsearch的响应结果: 
  
部署kibana
部署
-  运行docker命令,部署kibana docker run -d \ --name kibana \ -e ELASTICSEARCH_HOSTS=http://es:9200 \ --network=es-net \ -p 5601:5601 \ kibana:7.12.1- --network es-net:加入一个名为es-net的网络中,与elasticsearch在同一个网络中
- -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
- -p 5601:5601:端口映射配置
 kibana启动一般比较慢,需要多等待一会,可以通过命令: docker logs -f kibana查看运行日志,当查看到下面的日志,说明成功:
  
安装IK分词器
-  在线安装ik插件(较慢) # 进入容器内部 docker exec -it elasticsearch /bin/bash # 在线下载并安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip #退出 exit #重启容器 docker restart elasticsearch
-  离线安装ik插件(推荐) -  查看数据卷目录 
 安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:docker volume inspect es-plugins
-  下载解压缩分词器安装包 ,重命名为ik 
  
-  上传到es容器的插件数据卷中:也就是 /var/lib/docker/volumes/es-plugins/_data
-  重启容器: docker restart es
 
-  
-  测试: 
 IK分词器包含两种模式:-  ik_smart:最少切分
-  ik_max_word:最细切分
 GET /_analyze { "analyzer": "ik_max_word", "text": "小吴在敲Bug" }结果: { "tokens" : [ { "token" : "小吴", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 0 }, { "token" : "在", "start_offset" : 2, "end_offset" : 3, "type" : "CN_CHAR", "position" : 1 }, { "token" : "敲", "start_offset" : 3, "end_offset" : 4, "type" : "CN_CHAR", "position" : 2 }, { "token" : "bug", "start_offset" : 4, "end_offset" : 7, "type" : "ENGLISH", "position" : 3 } ] }
-  
扩展词词典
-  打开IK分词器config目录在IKAnalyzer.cfg.xml配置文件内容添加: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--> <entry key="ext_dict">ext.dic</entry> </properties>
-  新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改 尊嘟假嘟 奥力给
-  重启elasticsearch : docker restart es
停用词词典
-  IKAnalyzer.cfg.xml配置文件内容添加: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典--> <entry key="ext_dict">ext.dic</entry> <!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--> <entry key="ext_stopwords">stopword.dic</entry> </properties>
-  在 stopword.dic 添加停用词 啊 哦 额
-  重启elasticsearch : docker restart es
索引库操作
mapping映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有: 
  - 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
 
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
- properties:该字段的子字段
例如下面的json文档:
{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "小吴在敲Bug",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}
对应的每个字段映射(mapping):
- age:类型为 integer;参与搜索,因此需要index为true;无需分词器
- weight:类型为float;参与搜索,因此需要index为true;无需分词器
- isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
- info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
- email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
- score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
- name:类型为object,需要定义多个子属性 
  - name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
- name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
 
索引库的CRUD
创建索引库和映射
基本语法:
- 请求方式:PUT
- 请求路径:/索引库名,可以自定义
- 请求参数:mapping映射
格式:
PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}
查询索引库
基本语法:
-  请求方式:GET 
-  请求路径:/索引库名 
-  请求参数:无 
格式:GET /索引库名
修改索引库
语法说明:
PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}
删除索引库
语法:
-  请求方式:DELETE 
-  请求路径:/索引库名 
-  请求参数:无 
格式: DELETE /索引库名
文档操作
-  新增文档 POST /索引库名/_doc/文档id { "字段1": "值1", "字段2": "值2", "字段3": { "子属性1": "值3", "子属性2": "值4" }, // ... }
-  查询文档:根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上 
 GET /{索引库名称}/_doc/{id}
-  删除文档:删除使用DELETE请求,同样,需要根据id进行删除: 
 DELETE /{索引库名}/_doc/id值
-  修改文档 
 修改有两种方式:-  全量修改:直接覆盖原来的文档 - 根据指定的id删除文档
- 新增一个相同id的文档
 注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了
 PUT /{索引库名}/_doc/文档id { "字段1": "值1", "字段2": "值2", // ... 略 }
-  增量修改:修改文档中的部分字段 
 增量修改是只修改指定id匹配的文档中的部分字段POST /{索引库名}/_update/文档id { "doc": { "字段名": "新的值", } }
 
-  
RestClient操作索引库
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES
其中的Java Rest Client又包括两种:
- Java Low Level Rest Client
- Java High Level Rest Client
  
 我们学习的是Java High Level Rest Client客户端API
导入Demo工程
-  导入数据 
 首先导入课前资料提供的数据库数据:
  
 数据结构如下:CREATE TABLE `tb_hotel` ( `id` bigint(20) NOT NULL COMMENT '酒店id', `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店', `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路', `price` int(10) NOT NULL COMMENT '酒店价格;例:329', `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分', `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家', `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海', `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻', `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥', `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497', `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925', `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-  导入项目 
 然后导入课前资料提供的项目:
  
 项目结构如图:
  
-  mapping映射分析 
 创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:- 字段名
- 字段数据类型
- 是否参与搜索
- 是否需要分词
- 如果分词,分词器是什么?
 其中: - 字段名、字段数据类型,可以参考数据表结构的名称和类型
- 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
- 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
- 分词器,我们可以统一使用ik_max_word
 酒店数据的索引库结构: PUT /hotel { "mappings": { "properties": { "id":{ "type": "keyword" }, "name":{ "type": "text", "analyzer": "ik_max_word", "copy_to": "all" }, "address":{ "type": "keyword", "index": false }, "price":{ "type": "integer" }, "score":{ "type": "integer" }, "brand":{ "type": "keyword", "copy_to": "all" }, "city":{ "type": "keyword" }, "starName":{ "type": "keyword" }, "business":{ "type": "keyword", "copy_to": "all" }, "location":{ "type": "geo_point" }, "pic":{ "type": "keyword", "index": false }, "all":{ "type": "text", "analyzer": "ik_max_word" } } } }几个特殊字段说明: - location:地理坐标,里面包含精度、纬度
- all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索
 地理坐标说明: 
  
 copy_to说明:
  
-  初始化RestClient -  引入es的RestHighLevelClient依赖: <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>7.12.1</version> </dependency>
-  因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本: <properties> <elasticsearch.version>7.12.1</elasticsearch.version> </properties>
-  初始化RestHighLevelClient: RestHighLevelClient client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://192.168.1.12:9200") ));这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中: public class HotelIndexTest { private RestHighLevelClient client; @BeforeEach void setUp() { this.client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://192.168.150.101:9200") )); } @AfterEach void tearDown() throws IOException { this.client.close(); } }
 
-  
创建索引库
创建索引库的API如下:
 
 代码分为三步:
- 创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest
- 添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅
- 发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法
在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:
public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:
@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}
删除索引库
删除索引库的DSL语句非常简单:DELETE /hotel
 与创建索引库相比:
- 请求方式从PUT变为DELTE
- 请求路径不变
- 无请求参数
所以代码的差异,注意体现在Request对象上。依然是三步走:
- 创建Request对象。这次是DeleteIndexRequest对象
- 准备参数。这里是无参
- 发送请求。改用delete方法
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:
@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}
判断索引库是否存在
判断索引库是否存在,本质就是查询,对应的DSL是:GET /hotel
 因此与删除的Java代码流程是类似的。依然是三步走:
- 创建Request对象。这次是GetIndexRequest对象
- 准备参数。这里是无参
- 发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}
RestClient操作文档
为了与索引库操作分离,我们再次参加一个测试类,做两件事情:
- 初始化RestHighLevelClient
- 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;
    private RestHighLevelClient client;
    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.1.12:9200")
        ));
    }
    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}
新增文档
-  索引库实体类 
 数据库查询后的结果是一个Hotel类型的对象。结构如下:@Data @TableName("tb_hotel") public class Hotel { @TableId(type = IdType.INPUT) private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String longitude; private String latitude; private String pic; }与我们的索引库结构存在差异: - longitude和latitude需要合并为location
 因此,我们需要定义一个新的类型,与索引库结构吻合: @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); } }
-  语法说明 
 新增文档的DSL语句如下:POST /{索引库名}/_doc/1 { "name": "Jack", "age": 21 }对应的java代码如图: 
  
 可以看到与创建索引库类似,同样是三步走:- 创建Request对象
- 准备请求参数,也就是DSL中的JSON文档
- 发送请求
 变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了 
-  完整代码 
 我们导入酒店数据,基本流程一致,但是需要考虑几点变化:- 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
- hotel对象需要转为HotelDoc对象
- HotelDoc需要序列化为json格式
 因此,代码整体步骤如下: - 根据id查询酒店数据Hotel
- 将Hotel封装为HotelDoc
- 将HotelDoc序列化为JSON
- 创建IndexRequest,指定索引库名和id
- 准备请求参数,也就是JSON文档
- 发送请求
 在hotel-demo的HotelDocumentTest测试类中,编写单元测试: @Test void testAddDocument() throws IOException { // 1.根据id查询酒店数据 Hotel hotel = hotelService.getById(61083L); // 2.转换为文档类型 HotelDoc hotelDoc = new HotelDoc(hotel); // 3.将HotelDoc转json String json = JSON.toJSONString(hotelDoc); // 1.准备Request对象 IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString()); // 2.准备Json文档 request.source(json, XContentType.JSON); // 3.发送请求 client.index(request, RequestOptions.DEFAULT); }
查询文档
查询的DSL语句如下:GET /hotel/_doc/{id}
 非常简单,因此代码大概分两步:
- 准备Request对象
- 发送请求
不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:
 
 可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。
与之前类似,也是三步走:
- 准备Request对象。这次是查询,所以是GetRequest
- 发送请求,得到结果。因为是查询,这里调用client.get()方法
- 解析结果,就是对JSON做反序列化
完整代码
@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();
    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}
修改文档
修改我们讲过两种方式:
- 全量修改:本质是先根据id删除,再新增
- 增量修改:修改文档中的指定字段值
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
- 如果新增时,ID已经存在,则修改
- 如果新增时,ID不存在,则新增
这里不再赘述,我们主要关注增量修改。
代码示例如图:
 
 与之前类似,也是三步走:
- 准备Request对象。这次是修改,所以是UpdateRequest
- 准备参数。也就是JSON文档,里面包含要修改的字段
- 更新文档。这里调用client.update()方法
完整代码
 在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}
删除文档
删除的DSL为是这样的:DELETE /hotel/_doc/{id}
与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:
- 准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
- 准备参数,无参
- 发送请求。因为是删除,所以是client.delete()方法
完整代码
 在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}
批量导入文档
批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送
 其中提供了一个add方法,用来添加其他请求:
 
 可以看到,能添加的请求包括:
- IndexRequest,也就是新增
- UpdateRequest,也就是修改
- DeleteRequest,也就是删除
因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:
 
 其实还是三步走:
- 创建Request对象。这里是BulkRequest
- 准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
- 发起请求。这里是批处理,调用的方法为client.bulk()方法
完整代码
 我们在导入酒店数据时,将上述代码改造成for循环处理即可
 在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();
    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}
DSL查询文档
DSL查询分类
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
-  查询所有:查询出所有数据,一般测试用。例如:match_all 
-  全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: - match_query
- multi_match_query
 
-  精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如: - ids
- range
- term
 
-  地理(geo)查询:根据经纬度查询。例如: - geo_distance
- geo_bounding_box
 
-  复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如: - bool
- function_score
 
查询的语法基本一致:
GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}
我们以查询所有为例,其中:
- 查询类型为match_all
- 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}
其它查询无非就是查询类型、查询条件的变化
全文检索查询
使用场景
 全文检索查询的基本流程如下:
- 对用户搜索的内容做分词,得到词条
- 根据词条去倒排索引库中匹配,得到文档id
- 根据文档id找到文档,返回给用户
比较常用的场景包括:
- 商城的输入框搜索
- 百度输入框搜索
例如京东:
 
 因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段
基本语法
 常见的全文检索查询包括:
- match查询:单字段查询
- multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法如下:
GET /indexName/_search
{
  "query": {
    "match": {
      "字段名": "查询的关键字"
    }
  }
}
mulit_match语法如下:
GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "查询的关键字",
      "fields": ["字段名1", "字段名2"]
    }
  }
}
精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- term:根据词条精确值查询
- range:根据值的范围查询
term查询
语法说明:
// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "关键字"
      }
    }
  }
}
range查询
基本语法:
// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "字段名": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}
理坐标查询
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档
常见的使用场景包括:
- 携程:搜索我附近的酒店
- 滴滴:搜索我附近的出租车
- 微信:搜索我附近的人
矩形范围查询
 矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
 
 查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点
语法如下:
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "字段名": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}
附近查询
 附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
 
 语法说明:
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "字段名": "31.21,121.5" // 圆心
    }
  }
}
复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
- fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
- bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
算分函数查询
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
 
 要想人为控制相关性算分,就需要利用elasticsearch中的function score 查询了
语法说明
 
 function score 查询中包含四部分内容:
- 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
- 过滤条件:filter部分,符合该条件的文档才会重新算分
- 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数 
  - weight:函数结果是常量
- field_value_factor:以文档中的某个字段值作为函数结果
- random_score:以随机数作为函数结果
- script_score:自定义算分函数算法
 
- 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括: 
  - multiply:相乘
- replace:用function score替换query score
- 其它,例如:sum、avg、max、min
 
function score的运行流程如下:
- 根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
- 根据过滤条件,过滤文档
- 符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
- 将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
- 过滤条件:决定哪些文档的算分被修改
- 算分函数:决定函数算分的算法
- 运算模式:决定最终算分结果
示例
翻译一下这个需求,转换为之前说的四个要点:
- 原始条件:不确定,可以任意变化
- 过滤条件:brand = “如家”
- 算分函数:可以简单粗暴,直接给固定的算分结果,weight
- 运算模式:比如求和
因此最终的DSL语句如下:
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}
布尔查询
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
 
 每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
- 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
- 其它过滤条件,采用filter查询。不参与算分
语法示例:
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}
示例
 需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
- 名称搜索,属于全文检索查询,应该参与算分。放到must中
- 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
- 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

搜索结果处理
排序
普通字段排序
 keyword、数值、日期类型排序的语法基本一致
 语法:
GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "字段名": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}
排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推
地理坐标排序
 语法说明:
GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "字段名" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}
这个查询的含义是:
- 指定一个坐标,作为目标点
- 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
- 根据距离排序
分页
基本的分页
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}
深度分页问题
 现在,我要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}
这里是查询990开始的数据,也就是 第990~第1000条 数据
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:
 
 查询TOP1000,如果es是单点模式,这并无太大影响
 但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了
因为节点A的TOP200,在另一个节点可能排到10000名以外了
 因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000
 
 那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?
 当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求
针对深度分页,ES提供了两种解决方案,官方文档:
- search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
- scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。
高亮
高亮原理
 什么是高亮显示呢?
我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:
 
 高亮显示的实现分为两步:
- 给文档中的所有关键字都添加一个标签,例如<em>标签
- 页面给<em>标签编写CSS样式
实现高亮
高亮的语法:
GET /hotel/_search
{
  "query": {
    "match": {
      "字段名": "关键字" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "字段名": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}
注意:
- 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
- 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
- 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
RestClient查询文档
文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:
- 准备Request对象
- 准备请求参数
- 发起请求
- 解析响应
快速入门
发起查询请求
 
代码解读:
-  第一步,创建 SearchRequest对象,指定索引库名
-  第二步,利用 request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等- query():代表查询条件,利用- QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
 
-  第三步,利用client.search()发送请求,得到响应 这里关键的API有两个,一个是 request.source(),其中包含了查询、排序、分页、高亮等所有功能:
  
 另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:
  
解析响应
 
 elasticsearch返回的结果是一个JSON字符串,结构包含:
- hits:命中的结果- total:总条数,其中的value是具体的总条数值
- max_score:所有结果中得分最高的文档的相关性算分
- hits:搜索结果的文档数组,其中的每个文档都是一个json对象- _source:文档中的原始数据,也是json对象
 
 
因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:
- SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果- SearchHits#getTotalHits().value:获取总条数信息
- SearchHits#getHits():获取SearchHit数组,也就是文档数组- SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据
 
 
match查询
全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分
 
因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:
 
 而结果解析代码则完全一致,可以抽取并共享
完整代码如下:
@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}
精确查询
精确查询主要是两者:
- term:词条精确匹配
- range:范围查询
与之前的查询相比,差异同样在查询条件,其它都一样
查询条件构造的API如下:
 
复合查询
布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:
 
 可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变
完整代码如下:
@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));
    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}
排序、分页
搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置
对应的API如下:
 
完整代码示例:
@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}
高亮
高亮的代码与之前代码差异较大,有两点:
- 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
- 结果解析:结果除了要解析_source文档数据,还要解析高亮结果
高亮请求构建
 高亮请求的构建API如下:
 
 上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮
完整代码如下:
@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}
高亮结果解析
 高亮的结果与查询的文档结果默认是分离的,并不在一起
因此解析高亮的代码需要额外处理:
 
 代码解读:
- 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
- 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
- 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
- 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
- 第五步:用高亮的结果替换HotelDoc中的非高亮结果
完整代码如下:
private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}
数据聚合
聚合(aggregations) 可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
聚合常见的有三类:
-  桶(Bucket) 聚合:用来对文档做分组 - TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
 
-  度量(Metric) 聚合:用以计算一些值,比如:最大值、最小值、平均值等 - Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
 
-  管道(pipeline) 聚合:其它聚合的结果为基础做聚合 
DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合
Bucket聚合语法
 语法如下:
GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}
结果如图:
 
聚合结果排序
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}
限定聚合范围
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}
这次,聚合得到的品牌明显变少了:
 
Metric聚合语法
语法如下:
GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
RestAPI实现聚合
API语法
 聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件
聚合条件的语法:

 聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
 
 这种根据用户输入的字母,提示完整词条的功能,就是自动补全了
因为需要根据拼音字母来推断,因此要用到拼音分词功能
拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件
 
安装方式与IK分词器一样,分三步:
-  下载解压 
-  上传到虚拟机中,elasticsearch的plugin目录 
-  重启elasticsearch 
-  测试用法如下: POST /_analyze { "text": "如家酒店还不错", "analyzer": "pinyin" }结果: 
  
自定义分词器
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
 
 声明自定义分词器的语法如下:
PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { 
        "my_analyzer": { 
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": {
        "py": { 
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}
测试:
 
自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是completion类型
- 字段的内容一般是用来补全的多个词条形成的数组
比如,一个这样的索引库:
# 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}
然后插入下面的数据:
# 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}
查询的DSL语句如下:
# 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}
实现酒店搜索框自动补全
现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建
另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示
因此,总结一下,我们需要做的事情包括:
-  修改hotel索引库结构,设置自定义拼音分词器 
-  修改索引库的name、all字段,使用自定义分词器 
-  索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器 
-  给HotelDoc类添加suggestion字段,内容包含brand、business 
-  重新导入数据到hotel库 
修改酒店映射结构
// 酒店数据索引库
PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}
修改HotelDoc实体
 HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组
因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        // 组装suggestion
        if(this.business.contains("/")){
            // business有多个值,需要切割
            String[] arr = this.business.split("/");
            // 添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion, arr);
        }else {
            this.suggestion = Arrays.asList(this.brand, this.business);
        }
    }
}
重新导入
 重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:
 
自动补全查询的JavaAPI
 之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
 
 而自动补全的结果也比较特殊,解析的代码如下:
 
实现搜索框自动补全
 查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
 
 返回值是补全词条的集合,类型为List<String>
-  在 cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:@GetMapping("suggestion") public List<String> getSuggestions(@RequestParam("key") String prefix) { return hotelService.getSuggestions(prefix); }
-  在 cn.itcast.hotel.service包下的IhotelService中添加方法:List<String> getSuggestions(String prefix);
-  在 cn.itcast.hotel.service.impl.HotelService中实现该方法:@Override public List<String> getSuggestions(String prefix) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source().suggest(new SuggestBuilder().addSuggestion( "suggestions", SuggestBuilders.completionSuggestion("suggestion") .prefix(prefix) .skipDuplicates(true) .size(10) )); // 3.发起请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析结果 Suggest suggest = response.getSuggest(); // 4.1.根据补全查询名称,获取补全结果 CompletionSuggestion suggestions = suggest.getSuggestion("suggestions"); // 4.2.获取options List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions(); // 4.3.遍历 List<String> list = new ArrayList<>(options.size()); for (CompletionSuggestion.Entry.Option option : options) { String text = option.getText().toString(); list.add(text); } return list; } catch (IOException e) { throw new RuntimeException(e); } }
数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步
 
思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
同步调用:
 
 基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口
异步通知:
 
 流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
监听binlog:
 
 流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
选择:
 方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
实现数据同步
思路:
 利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
步骤:
-  导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD 
-  声明exchange、queue、RoutingKey 
-  在hotel-admin中的增、删、改业务中完成消息发送 
-  在hotel-demo中完成消息监听,并更新elasticsearch中数据 
-  启动并测试数据同步功能 
导入demo
 导入课前资料提供的hotel-admin项目:
 运行后,访问 http://localhost:8099
 
 其中包含了酒店的CRUD功能:
 
声明交换机、队列:
 
-  引入依赖 
 在hotel-admin、hotel-demo中引入rabbitmq的依赖:<!--amqp--> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency>
-  配置mq地址 spring: rabbitmq: host: 192.168.1.12 port: 5672 username: xiaowu password: 123321 virtual-host: /
-  声明队列交换机名称 
 在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants:public class MqConstants { /** * 交换机 */ public final static String HOTEL_EXCHANGE = "hotel.topic"; /** * 监听新增和修改的队列 */ public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue"; /** * 监听删除的队列 */ public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue"; /** * 新增或修改的RoutingKey */ public final static String HOTEL_INSERT_KEY = "hotel.insert"; /** * 删除的RoutingKey */ public final static String HOTEL_DELETE_KEY = "hotel.delete"; }
-  声明队列交换机 
 在hotel-demo中,定义配置类,声明队列、交换机:@Configuration public class MqConfig { @Bean public TopicExchange topicExchange(){ return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false); } @Bean public Queue insertQueue(){ return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true); } @Bean public Queue deleteQueue(){ return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true); } @Bean public Binding insertQueueBinding(){ return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY); } @Bean public Binding deleteQueueBinding(){ return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY); } }
-  发送MQ消息 
 在hotel-admin中的增、删、改业务中分别发送MQ消息
  
-  接收MQ消息 
 hotel-demo接收到MQ消息要做的事情包括:- 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
- 删除消息:根据传递的hotel的id删除索引库中的一条数据
 首先在hotel-demo的 cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务void deleteById(Long id); void insertById(Long id);给hotel-demo中的 cn.itcast.hotel.service.impl包下的HotelService中实现业务:@Override public void deleteById(Long id) { try { // 1.准备Request DeleteRequest request = new DeleteRequest("hotel", id.toString()); // 2.发送请求 client.delete(request, RequestOptions.DEFAULT); } catch (IOException e) { throw new RuntimeException(e); } } @Override public void insertById(Long id) { try { // 0.根据id查询酒店数据 Hotel hotel = getById(id); // 转换为文档类型 HotelDoc hotelDoc = new HotelDoc(hotel); // 1.准备Request对象 IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString()); // 2.准备Json文档 request.source(JSON.toJSONString(hotelDoc), XContentType.JSON); // 3.发送请求 client.index(request, RequestOptions.DEFAULT); } catch (IOException e) { throw new RuntimeException(e); } }编写监听器:在hotel-demo中的 cn.itcast.hotel.mq包新增一个类:@Component public class HotelListener { @Autowired private IHotelService hotelService; /** * 监听酒店新增或修改的业务 * @param id 酒店id */ @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE) public void listenHotelInsertOrUpdate(Long id){ hotelService.insertById(id); } /** * 监听酒店删除的业务 * @param id 酒店id */ @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE) public void listenHotelDelete(Long id){ hotelService.deleteById(id); } }
ES集群
单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica )
ES集群相关概念:
- 集群(cluster):一组拥有共同的 cluster name 的 节点
- 节点(node) :集群中的一个 Elasticearch 实例
- 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
 解决问题:数据量太大,单点存储量有限的问题
  
 此处,我们把数据分成3片:shard0、shard1、shard2
- 主分片(Primary shard):相对于副本分片的定义
- 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
 
 现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
搭建集群
创建es集群
 首先编写一个docker-compose文件,内容如下:
version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1 #镜像
    container_name: es01	#容器名称
    environment:	#环境变量
      - node.name=es01	#节点名称
      - cluster.name=es-docker-cluster #集群名称
      - discovery.seed_hosts=es02,es03	#集群中其他节点的地址
      - cluster.initial_master_nodes=es01,es02,es03 #初始化的主节点
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m" #JVM堆内存大小
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local
networks:
  elastic:
    driver: bridge
es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件
vi /etc/sysctl.conf
添加下面的内容:
vm.max_map_count=262144
然后执行命令,让配置生效:
sysctl -p
通过docker-compose启动集群:
docker-compose up -d
集群状态监控
 kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂
这里推荐使用cerebro来监控es集群状态,解压即可使用,非常方便
 解压好的目录如下:
 
 进入对应的bin目录:
 
 双击其中的cerebro.bat文件即可启动服务
 
 访问http://localhost:9000 即可进入管理界面:
 
 输入你的elasticsearch的任意节点的地址和端口,点击connect即可:
 
 绿色的条,代表集群处于绿色(健康状态)
集群脑裂问题
集群脑裂问题
 elasticsearch中集群节点有不同的职责划分:
 
 默认情况下,集群中的任何一个节点都同时具备上述四种角色
但是真实的集群一定要将集群职责分离:
- master节点:对CPU要求高,但是内存要求低
- data节点:对CPU和内存要求都高
- coordinating节点:对网络带宽、CPU要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。
一个典型的es集群职责划分如图:
 
脑裂问题
 脑裂是因为集群中的节点失联导致的
 例如一个集群中,主节点与其它节点失联:
 
 此时,node2和node3认为node1宕机,就会重新选主:
 
 当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异
当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:
 
 解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题
例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂
集群分布式存储
分片存储测试
 插入三条数据:
 

 
 测试可以看到,三条数据分别在不同分片:
 
 结果:
 
分片存储原理
 elasticsearch会通过hash算法来计算文档应该存储到哪个分片:
 
 说明:
- _routing默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
新增文档的流程如下:
 
集群分布式查询
elasticsearch的查询分成两个阶段:
-  scatter phase:分散阶段,coordinating node会把请求分发到每一个分片 
-  gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户 
  
集群故障转移
- 例如一个集群结构如图:
  
 现在,node1是主节点,其它两个节点是从节点
- 突然,node1发生了故障:
  
 宕机后的第一件事,需要重新选主,例如选中了node2:
  
 node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:
  










