目录
LaMa Image Inpainting 图像修复 Onnx Demo
介绍
gihub地址:https://github.com/advimman/lama
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

效果

模型信息
Model Properties
 -------------------------
 ---------------------------------------------------------------
 Inputs
 -------------------------
 name:image
 tensor:Float[1, 3, 1000, 1504]
 name:mask
 tensor:Float[1, 1, 1000, 1504]
 ---------------------------------------------------------------
 Outputs
 -------------------------
 name:inpainted
 tensor:Float[1, 1000, 1504, 3]
 ---------------------------------------------------------------
项目

代码
using Microsoft.ML.OnnxRuntime;
 using Microsoft.ML.OnnxRuntime.Tensors;
 using OpenCvSharp;
 using System;
 using System.Collections.Generic;
 using System.Drawing;
 using System.Linq;
 using System.Text;
 using System.Windows.Forms;
namespace Onnx_Demo
 {
     public partial class Form1 : Form
     {
         public Form1()
         {
             InitializeComponent();
         }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
         string image_path = "";
         string image_path_mask = "";
         DateTime dt1 = DateTime.Now;
         DateTime dt2 = DateTime.Now;
         string model_path;
         Mat image;
         Mat image_mask;
        SessionOptions options;
         InferenceSession onnx_session;
         Tensor<float> input_tensor;
         Tensor<float> input_tensor_mask;
         List<NamedOnnxValue> input_container;
         IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
StringBuilder sb = new StringBuilder();
        private void button1_Click(object sender, EventArgs e)
         {
             OpenFileDialog ofd = new OpenFileDialog();
             ofd.Filter = fileFilter;
             if (ofd.ShowDialog() != DialogResult.OK) return;
             pictureBox1.Image = null;
             image_path = ofd.FileName;
             pictureBox1.Image = new Bitmap(image_path);
             textBox1.Text = "";
             image = new Mat(image_path);
             pictureBox2.Image = null;
         }
        private void button2_Click(object sender, EventArgs e)
         {
             if (image_path == "")
             {
                 return;
             }
            button2.Enabled = false;
             pictureBox2.Image = null;
             textBox1.Text = "";
            image = new Mat(image_path);
             int w = image.Width;
             int h = image.Height;
             image_mask = new Mat(image_path_mask);
Common.Preprocess(image, image_mask, input_tensor, input_tensor_mask);
            //将 input_tensor 放入一个输入参数的容器,并指定名称
             input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));
            //将 input_tensor_mask 放入一个输入参数的容器,并指定名称
             input_container.Add(NamedOnnxValue.CreateFromTensor("mask", input_tensor_mask));
            dt1 = DateTime.Now;
             //运行 Inference 并获取结果
             result_infer = onnx_session.Run(input_container);
             dt2 = DateTime.Now;
Mat result = Common.Postprocess(result_infer);
Cv2.Resize(result, result, new OpenCvSharp.Size(w, h));
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            pictureBox2.Image = new Bitmap(result.ToMemoryStream());
             textBox1.Text = sb.ToString();
            button2.Enabled = true;
         }
        private void Form1_Load(object sender, EventArgs e)
         {
             model_path = "model/big_lama_regular_inpaint.onnx";
            // 创建输出会话,用于输出模型读取信息
             options = new SessionOptions();
             options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
             options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
             onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            // 输入Tensor
             input_tensor = new DenseTensor<float>(new[] { 1, 3, 1000, 1504 });
input_tensor_mask = new DenseTensor<float>(new[] { 1, 1, 1000, 1504 });
            // 创建输入容器
             input_container = new List<NamedOnnxValue>();
            image_path = "test_img/test.jpg";
             pictureBox1.Image = new Bitmap(image_path);
            image_path_mask = "test_img/mask.jpg";
             pictureBox3.Image = new Bitmap(image_path_mask);
         }
     }
 }
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path_mask = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat image_mask;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor_mask;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        StringBuilder sb = new StringBuilder();
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            image = new Mat(image_path);
            int w = image.Width;
            int h = image.Height;
            image_mask = new Mat(image_path_mask);
            Common.Preprocess(image, image_mask, input_tensor, input_tensor_mask);
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));
            //将 input_tensor_mask 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("mask", input_tensor_mask));
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;
            Mat result = Common.Postprocess(result_infer);
            Cv2.Resize(result, result, new OpenCvSharp.Size(w, h));
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            pictureBox2.Image = new Bitmap(result.ToMemoryStream());
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/big_lama_regular_inpaint.onnx";
            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 1000, 1504 });
            input_tensor_mask = new DenseTensor<float>(new[] { 1, 1, 1000, 1504 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();
            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image_path_mask = "test_img/mask.jpg";
            pictureBox3.Image = new Bitmap(image_path_mask);
        }
    }
}
 
Common.cs
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Onnx_Demo
{
    internal class Common
    {
        public static void Preprocess(Mat image, Mat image_mask,  Tensor<float> input_tensor, Tensor<float> input_tensor_mask)
        {
            Cv2.Resize(image, image, new OpenCvSharp.Size(1504, 1000));
            // 输入Tensor
            for (int y = 0; y < image.Height; y++)
            {
                for (int x = 0; x < image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = image.At<Vec3b>(y, x)[0] / 255.0f;
                    input_tensor[0, 1, y, x] = image.At<Vec3b>(y, x)[1] / 255.0f;
                    input_tensor[0, 2, y, x] = image.At<Vec3b>(y, x)[2] / 255.0f;
                }
            }
            Cv2.Resize(image_mask, image_mask, new OpenCvSharp.Size(1504, 1000));
            //膨胀核函数
            Mat element1 = new Mat();
            OpenCvSharp.Size size1 = new OpenCvSharp.Size(11, 11);
            element1 = Cv2.GetStructuringElement(MorphShapes.Rect, size1);
            //膨胀一次,让轮廓突出
            Mat dilation = new Mat();
            Cv2.Dilate(image_mask, image_mask, element1);
            //输入Tensor
            for (int y = 0; y < image_mask.Height; y++)
            {
                for (int x = 0; x < image_mask.Width; x++)
                {
                    float v = image_mask.At<Vec3b>(y, x)[0];
                    if (v > 127)
                    {
                        input_tensor_mask[0, 0, y, x] = 1.0f;
                    }
                    else
                    {
                        input_tensor_mask[0, 0, y, x] = 0.0f;
                    }
                }
            }
        }
        public static Mat Postprocess(IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer)
        {
            // 将输出结果转为DisposableNamedOnnxValue数组
            DisposableNamedOnnxValue[] results_onnxvalue = result_infer.ToArray();
            // 读取第一个节点输出并转为Tensor数据
            Tensor<float> result_tensors = results_onnxvalue[0].AsTensor<float>();
            float[] result_array = result_tensors.ToArray();
            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = Math.Max(0, Math.Min(255, result_array[i]));
            }
            Mat result = new Mat(1000, 1504, MatType.CV_32FC3, result_array);
            return result;
        }
    }
}
 
下载
源码下载










