锁相环(PLL)是一种常用的频率、相位追踪算法,在信号解调、交流并网等领域有着广泛的应用。本文对全数字锁相环的原理进行介绍,随后给出 verilog 实现及仿真。
PLL 锁相原理
锁相环结构如下图所示,主要由鉴相器、环路滤波器、压控振荡器等构成

其中鉴相器是一个乘法器,设参考信号  
     
      
       
        
        
          u 
         
        
          i 
         
        
       
      
        u_i 
       
      
    ui 、本地信号  
     
      
       
        
        
          u 
         
        
          o 
         
        
       
      
        u_o 
       
      
    uo 均为正弦信号
  
      
       
        
         
         
           u 
          
         
           i 
          
         
        
          ( 
         
        
          t 
         
        
          ) 
         
        
          = 
         
        
          c 
         
        
          o 
         
        
          s 
         
        
          ( 
         
         
         
           ω 
          
         
           1 
          
         
        
          t 
         
        
          + 
         
         
         
           φ 
          
         
           1 
          
         
        
          ) 
         
        
       
         u_i(t)=cos(\omega_1 t+\varphi_1) 
        
       
     ui(t)=cos(ω1t+φ1)
u o ( t ) = c o s ( ω 2 t + φ 2 ) u_o(t)=cos(\omega_2 t+\varphi_2) uo(t)=cos(ω2t+φ2)
  根据积化和差公式, 
     
      
       
        
        
          u 
         
        
          i 
         
        
       
      
        u_i 
       
      
    ui 与  
     
      
       
        
        
          u 
         
        
          o 
         
        
       
      
        u_o 
       
      
    uo 的乘积将包含  
     
      
       
        
        
          ω 
         
        
          1 
         
        
       
         + 
        
        
        
          ω 
         
        
          2 
         
        
       
      
        \omega_1+\omega_2 
       
      
    ω1+ω2 和  
     
      
       
        
        
          ω 
         
        
          1 
         
        
       
         − 
        
        
        
          ω 
         
        
          2 
         
        
       
      
        \omega_1-\omega_2 
       
      
    ω1−ω2 两个频率分量,经过 LF 低通滤波后,将仅剩两者的差频信号
  
      
       
        
         
          
           
            
            
              u 
             
            
              c 
             
            
           
          
          
           
            
             
            
              = 
             
            
              c 
             
            
              o 
             
            
              s 
             
            
              [ 
             
            
              ( 
             
             
             
               ω 
              
             
               1 
              
             
            
              − 
             
             
             
               ω 
              
             
               2 
              
             
            
              ) 
             
            
              t 
             
            
              + 
             
            
              ( 
             
             
             
               φ 
              
             
               1 
              
             
            
              − 
             
             
             
               φ 
              
             
               2 
              
             
            
              ) 
             
            
              ] 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
            
              c 
             
            
              o 
             
            
              s 
             
            
              [ 
             
            
              2 
             
            
              π 
             
            
              ( 
             
             
             
               f 
              
             
               1 
              
             
            
              − 
             
             
             
               f 
              
             
               2 
              
             
            
              ) 
             
            
              t 
             
            
              + 
             
            
              ( 
             
             
             
               φ 
              
             
               1 
              
             
            
              − 
             
             
             
               φ 
              
             
               2 
              
             
            
              ) 
             
            
              ] 
             
            
           
          
         
        
       
         \begin{aligned} u_c&=cos[(\omega_1-\omega_2)t+(\varphi_1-\varphi_2)]\\ &=cos[2\pi(f_1-f_2)t+(\varphi_1-\varphi_2)] \end{aligned} 
        
       
     uc=cos[(ω1−ω2)t+(φ1−φ2)]=cos[2π(f1−f2)t+(φ1−φ2)]
 使用  
     
      
       
        
        
          f 
         
        
          2 
         
        
       
         = 
        
        
        
          f 
         
        
          0 
         
        
       
         + 
        
        
        
          K 
         
        
          0 
         
        
        
        
          u 
         
        
          c 
         
        
       
      
        f_2=f_0+K_0 u_c 
       
      
    f2=f0+K0uc 控制压控振荡器(数字式的一般用 DDS 技术生成)的频率,即可完成锁相。
  假设输入信号相对于基准频率  
     
      
       
        
        
          f 
         
        
          0 
         
        
       
      
        f_0 
       
      
    f0 存在  
     
      
       
       
         Δ 
        
       
         f 
        
       
      
        \Delta f 
       
      
    Δf 的频率偏差,则完成锁相后两信号将具有固定的相位偏差  
     
      
       
       
         Δ 
        
       
         φ 
        
       
      
        \Delta \varphi 
       
      
    Δφ,关系如下
  
      
       
        
        
          Δ 
         
        
          f 
         
        
          = 
         
         
         
           K 
          
         
           0 
          
         
        
          c 
         
        
          o 
         
        
          s 
         
        
          ( 
         
        
          Δ 
         
        
          φ 
         
        
          ) 
         
        
       
         \Delta f=K_0cos(\Delta \varphi) 
        
       
     Δf=K0cos(Δφ)
 当然也应当注意到这里的  
     
      
       
       
         Δ 
        
       
         φ 
        
       
      
        \Delta \varphi 
       
      
    Δφ 符号无法被确定。
verilog 实现
PLL 模块主程序如下
/* 
 * file			: ADPLL.v
 * author		: 今朝无言
 * lab		    : WHU-EIS-LMSWE
 * date			: 2023-08-03
 * version		: v1.0
 * description	: 锁相环
 * Copyright © 2023 WHU-EIS-LMSWE, All Rights Reserved.
 */
module ADPLL(
input						clk,
input						rst_n,
input		signed	[15:0]	A,		//参考信号
input		signed	[15:0]	B,		//本地信号
output		signed	[15:0]	df		//频偏
);
parameter	CLK_FREQ	= 1_000_000;	//采样频率
reg signed	[15:0]	df	= 16'd0;
//-----------------------multi---------------------------------
reg	signed	[31:0]	multi	= 32'd0;
always @(posedge clk) begin
	if(~rst_n) begin
		multi	<= 32'd0;
	end
	else begin
		multi	<= A*B;
	end
end
//------------------------FIR---------------------------------
wire	signed	[15:0]	multi_filt  [1:3];
localparam	FIR_N = 20;	//FIR阶数
wire	[16*(FIR_N+1)-1:0]	FIR_params;
FIR_params_0d1 FIR_params_inst(
	.params		(FIR_params)
);
wire    clk_div10;
wire    clk_div100;
clkdiv #(.N(10)) clkdiv10(
	.clk_in     (clk),
	.clk_out    (clk_div10)
);
clkdiv #(.N(100)) clkdiv100(
	.clk_in     (clk),
	.clk_out    (clk_div100)
);
//低通滤波						多级低通滤波,中间穿插下采样
FIR_filter #(.N(FIR_N + 1))
FIR_filter_inst1(
	.clk			(clk),
	.rst_n			(rst_n),
	.filter_params	(FIR_params),
	.data_in		(multi[31:16]),
	.data_out		(multi_filt[1])
);
//低通滤波
FIR_filter #(.N(FIR_N + 1))
FIR_filter_inst2(
	.clk			(clk_div10),
	.rst_n			(rst_n),
	.filter_params	(FIR_params),
	.data_in		(multi_filt[1]),
	.data_out		(multi_filt[2])
);
//低通滤波
FIR_filter #(.N(FIR_N + 1))
FIR_filter_inst3(
	.clk			(clk_div100),
	.rst_n			(rst_n),
	.filter_params	(FIR_params),
	.data_in		(multi_filt[2]),
	.data_out		(multi_filt[3])
);
//---------------------control---------------------------------
always @(posedge clk_div100) begin
	df	<= multi_filt[3];		//  df=K*multi_filt,此处省略鉴相灵敏度K,外部请自行设置合理的K值s
end
endmodule
低通滤波器及其参数代码如下
/* 
 * file         : FIR_filter.v
 * author       : 今朝无言
 * lab		    : WHU-EIS-LMSWE
 * date		    : 2023-07-03
 * version      : v1.0
 * description  : FIR 滤波器
 */
module FIR_filter(
input							clk,
input							rst_n,
input				[16*N-1:0]	filter_params,
input		signed	[15:0]		data_in,
output	reg	signed	[15:0]		data_out
);
parameter	N		= 32;	//滤波器参数个数
parameter	div_N	= 16;	//sum结果除 2^div_N,作为 filter 的输出
//FIR 滤波器参数
reg	signed	[15:0] b[0:N-1];
integer	m;
always @(*) begin
	for(m=0; m<N; m=m+1) begin
		b[m]	<= filter_params[(m << 4) +: 16];
	end
end
reg	signed	[15:0]	shift_reg[0:N-1];
integer	i;
always @(posedge clk) begin
	if(~rst_n) begin
		for(i=N-1; i>=0; i=i-1) begin
			shift_reg[i]	<= 16'd0;
		end
	end
	else begin
		for(i=N-1; i>0; i=i-1) begin
			shift_reg[i]	<= shift_reg[i-1];
		end
		shift_reg[0]		<= data_in;
	end
end
reg		signed	[31:0]	multi[0:N-1];
integer	j;
always @(*) begin
	for(j=0; j<N; j=j+1) begin
		multi[j]	<= shift_reg[j] * b[j];
		//这里可以考虑使用multiplier IP核,使用LUT搭建(而这里直接乘使用的是DSP资源,一般的FPGA芯片只有几百个)
	end
end
reg		signed	[47:0]	sum;
integer	k;
always @(*) begin
	sum		= 0;
	for(k=0; k<N; k=k+1) begin
		sum	= sum + multi[k];
	end
end
always @(posedge clk) begin
	data_out	<= sum[47-div_N : 32-div_N];
end
endmodule
/* 
 * file			: FIR_params.v
 * author		: 今朝无言
 * lab			: WHU-EIS-LMSWE
 * date			: 2023-08-04
 * version		: v1.0
 * description	: FIR 滤波器    lowpass   N=20   fc=0.1 fs
 */
module FIR_params_0d1(
output	[335:0]	params
);
assign	params[15:0]	= 16'h0000;
assign	params[31:16]	= 16'h0057;
assign	params[47:32]	= 16'h0131;
assign	params[63:48]	= 16'h0302;
assign	params[79:64]	= 16'h0616;
assign	params[95:80]	= 16'h0A6D;
assign	params[111:96]	= 16'h0FA8;
assign	params[127:112]	= 16'h1518;
assign	params[143:128]	= 16'h19E1;
assign	params[159:144]	= 16'h1D28;
assign	params[175:160]	= 16'h1E53;
assign	params[191:176]	= 16'h1D28;
assign	params[207:192]	= 16'h19E1;
assign	params[223:208]	= 16'h1518;
assign	params[239:224]	= 16'h0FA8;
assign	params[255:240]	= 16'h0A6D;
assign	params[271:256]	= 16'h0616;
assign	params[287:272]	= 16'h0302;
assign	params[303:288]	= 16'h0131;
assign	params[319:304]	= 16'h0057;
assign	params[335:320]	= 16'h0000;
endmodule
关于 FIR 滤波器这部分可以参考我之前的博文。
仿真
仿真测试代码如下
`timescale 100ns/1ns
module PLL_tb();
reg		clk_1M	= 1'b1;
always #5 begin
	clk_1M	<= ~clk_1M;
end
reg		rst_n	= 1'b1;
//---------------------参考信号A-------------------------------
wire			[15:0]	A_out_tmp;
wire	signed	[15:0]	A_out;		//参考信号
localparam	f0	= 24'd10_000;
localparam	df	= -24'd9;		//频率偏差
DDS #(
	.Freq(1_000_000)
)
DDS_inst1(
	.clk		(clk_1M),
	.rst_n		(rst_n),
	.fout		(f0+df),
	.phase0		(16'd0),
	.sin_out	(A_out_tmp)
);
assign	A_out	= A_out_tmp - 16'd32768;
//---------------------本地信号B-------------------------------
wire			[15:0]	B_out_tmp;
wire	signed	[15:0]	B_out;
wire	signed	[23:0]	df2;		//控制本地信号的频偏
DDS #(
	.Freq		(1_000_000)
)
DDS_inst2(
	.clk		(clk_1M),
	.rst_n		(rst_n),
	.fout		(f0+df2),
	.phase0		(16'd0),
	.sin_out	(B_out_tmp)
);
assign	B_out	= B_out_tmp - 16'd32768;
//-----------------------PLL---------------------------------
wire	signed	[15:0]	df_PLL;
ADPLL #(
	.Freq		(1_000_000)
)
PLL_inst(
	.clk		(clk_1M),
	.rst_n		(rst_n),
	.A			(A_out),		//参考信号
	.B			(B_out),		//本地信号
	.df			(df_PLL)		//频偏
);
assign	df2	= df_PLL/64;
//-----------------------tb---------------------------------
initial begin
	rst_n	<= 1'b0;
	#5000;
	rst_n	<= 1'b1;
	#100;
	#1000000;
	$stop;
end
endmodule
DDS 代码如下
/* 
 * file			: DDS.v
 * author		: 今朝无言
 * Lab			: WHU-EIS-LMSWE
 * date			: 2023-05-17
 * version		: v1.0
 * description	: 根据给定频率输出正弦信号
 * Copyright © 2023 WHU-EIS-LMSWE, All Rights Reserved.
 */
module DDS(
input			clk,
input			rst_n,
input	[23:0]	fout,		//输出正弦波的频率  1k-10M 要24位
input	[15:0]	phase0,		//初相
output	[15:0]	sin_out
);
parameter	Freq	= 100_000_000;		//clk频率,Hz
//-----------------相位累加器-----------------------
reg		[47:0]	int_f_16	= 48'd0;	//相位累加器,x-16定点数
wire	[55:0]	dphi_16;				//相位步进
//dphi*Freq=fout*T, T=65536
assign	dphi_16	= (fout << 32)/Freq;
always @(posedge clk or negedge rst_n) begin
	if(~rst_n) begin
		int_f_16	<= 48'd0;
	end
	else begin
		int_f_16	<= int_f_16 + dphi_16;
	end
end
//-----------------正弦查找表-----------------------
wire	[15:0]	phase;
sin_gen sin_gen_inst(
	.clk		(clk),
	.phase		(phase),		//相位
	.sin_out	(sin_out)
);
assign phase	= phase0 + (int_f_16 >> 16);
endmodule
相应的正弦查找表如下(该模块使用线性插值的方法,在仅少量增加资源消耗的情况下,将量化误差缩小了两个数量级;这部分也可详见我之前的博文)
/* 
 * file			: sin_gen.v
 * author		: 今朝无言
 * Lab			: WHU-EIS-LMSWE
 * date			: 2023-05-17
 * version		: v1.0
 * description	: 根据给定相位输出正弦信号
 * Copyright © 2023 WHU-EIS-LMSWE, All Rights Reserved.
 */
module sin_gen(
input			clk,
input	[15:0]	phase,		//相位,0~65535对应[0~2pi)
output	[15:0]	sin_out
);
//---------------------正弦查找表-------------------------
wire	[7:0]	addr1;
wire	[7:0]	addr2;
wire	[15:0]	sin_dat1;
wire	[15:0]	sin_dat2;
//sin rom, 16bit, 256 depth
sin_rom sin_rom_inst1(
	.clka	(clk),
	.addra	(addr1),
	.douta	(sin_dat1)
);
sin_rom sin_rom_inst2(
	.clka	(clk),
	.addra	(addr2),
	.douta	(sin_dat2)
);
//-----------线性插值获取更精确的相位分辨率-------------------
assign	addr1	= (phase>>8);
assign	addr2	= (phase>>8)+1;
wire	[15:0]	phase1;
wire	[15:0]	phase2;
assign	phase1	= addr1<<8;
assign	phase2	= addr2<<8;
reg		[15:0]	phase_d0;
reg		[15:0]	phase_d1;	//由于rom数据2拍后才给出,因此phase需要与之同步
reg		[15:0]	phase1_d0;
reg		[15:0]	phase1_d1;
always @(posedge clk) begin
	phase_d0	<= phase;
	phase_d1	<= phase_d0;
	phase1_d0	<= phase1;
	phase1_d1	<= phase1_d0;
end
wire	[31:0]	multi;
assign	multi	= (sin_dat2 > sin_dat1)? 
				(sin_dat2 - sin_dat1)*(phase_d1 - phase1_d1) : 
				(sin_dat1 - sin_dat2)*(phase_d1 - phase1_d1);
assign	sin_out	= (sin_dat2 > sin_dat1)? 
				sin_dat1 + (multi >> 8) : sin_dat1 - (multi >> 8);
endmodule
仿真结果如下











