参考资料:https: // blog.csdn.net / shelgi / article / details / 126908418
————通过下面这个例子,终于能理解一点模糊理论的应用了,感谢原作。
熟悉简单的skfuzzy构建接近生活事件的模糊控制器
假设下面这样的场景, 我们希望构建一套模糊控制系统, 通过室外温度和风的大小来判断穿几件衣服
室外温度的范围设置为0 - 40度, 虽然今年夏天超过40度在我们这边很平常, 但是我们这里还是以40度为最高界限
风的大小范围0 - 10, 这里不是风的级数, 而是我自己构建的大小.模糊理论奥妙就在于不需要精确的逻辑值,
可以模糊描述.比如小风我设置为1 - 3, 然后有点大的风等等, 都是比较抽象的描述, 但是经过隶属函数可以看出, 往往某个值是在多个状态叠加.
衣服的件数我设置为1 - 6(不能一件衣服不穿), 如果按照本人自己的爱好, 我最多也只穿三件.不过考虑到实际还是设一个大点的范围
 
 
import matplotlib.pyplot as plt
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
import matplotlib.pyplot as plt
"""
    scikit-fuzzy模块,它可以实现模糊控制系统
    1.选择输入输出模糊集
    2.定义输入输出隶属度函数(不同的隶属度函数,会导致不同的控制特性)
    3.建立模糊控制表
    4.建立模糊控制规则
    5.模糊推理
    6.反模糊化
    7.输出结果绘制结果3D图
"""
""" 方式一: 调用库函数 """
if 0:
    temp = ctrl.Antecedent(np.arange(0, 41, 1), 'temp')
    wind = ctrl.Antecedent(np.arange(0, 11, 1), 'wind')
    clothes = ctrl.Consequent(np.arange(1, 7, 1), 'clothes')
    
    temp.automf(3)
    wind.automf(3)
    
    clothes['low'] = fuzz.trimf(clothes.universe, [1, 1, 3])
    clothes['medium'] = fuzz.trimf(clothes.universe, [1, 3, 6])
    clothes['high'] = fuzz.trimf(clothes.universe, [3, 6, 6])
    rule1 = ctrl.Rule(temp['good'] | wind['poor'], clothes['low'])
    rule2 = ctrl.Rule(temp['average'], clothes['medium'])
    rule3 = ctrl.Rule(temp['poor'] | wind['good'], clothes['high'])
    rule1.view()
    rule2.view()
    rule3.view()
    
    cloth_ctrl = ctrl.ControlSystem([rule1, rule2, rule3])
    
    cloth_num = ctrl.ControlSystemSimulation(cloth_ctrl)
    
    cloth_num.input['temp'] = 20
    cloth_num.input['wind'] = 2
    
    clothes.defuzzify_method = 'mom'
    
    cloth_num.compute()
    cloth_num_res = cloth_num.output['clothes']
    print(f"The result of clothes: {cloth_num_res}")
    
    clothes.view(sim=cloth_num)
    plt.show()
else:
    """ 方式二: 手动实现模糊规则 """
    plt.rcParams['font.family'] = 'simhei'
    x_temp = np.arange(0, 41, 1)
    x_wind = np.arange(0, 11, 1)
    x_clothes = np.arange(1, 7, 1)
    
    temp_cold = fuzz.trimf(x_temp, [0, 0, 15])
    temp_warm = fuzz.trimf(x_temp, [5, 25, 35])
    temp_hot = fuzz.trimf(x_temp, [25, 40, 40])
    plt.figure()
    plt.title("Temperature")
    plt.plot(x_temp, temp_cold, 'b', label='cold')
    plt.plot(x_temp, temp_warm, 'y', label='warm')
    plt.plot(x_temp, temp_hot, 'r', label='hot')
    plt.legend()
    
    wind_low = fuzz.trimf(x_wind, [0, 0, 5])
    wind_medium = fuzz.trimf(x_wind, [0, 5, 10])
    wind_high = fuzz.trimf(x_wind, [5, 10, 10])
    plt.figure()
    plt.title("Wind")
    plt.plot(x_wind, wind_low, 'b', label='low')
    plt.plot(x_wind, wind_medium, 'y', label='medium')
    plt.plot(x_wind, wind_high, 'r', label='high')
    plt.legend()
    
    cloth_low = fuzz.trimf(x_clothes, [1, 1, 3])
    cloth_medium = fuzz.trimf(x_clothes, [1, 3, 6])
    cloth_high = fuzz.trimf(x_clothes, [3, 6, 6])
    plt.figure()
    plt.title("clothes")
    plt.plot(x_clothes, cloth_low, 'b', label='low')
    plt.plot(x_clothes, cloth_medium, 'y', label='medium')
    plt.plot(x_clothes, cloth_high, 'r', label='high')
    plt.legend()
    
    temp_test = 30
    wind_test = 5
    temp_level_cold = fuzz.interp_membership(x_temp, temp_cold, temp_test)
    temp_level_warm = fuzz.interp_membership(x_temp, temp_warm, temp_test)
    temp_level_hot = fuzz.interp_membership(x_temp, temp_hot, temp_test)
    wind_level_low = fuzz.interp_membership(x_wind, wind_low, wind_test)
    wind_level_medium = fuzz.interp_membership(x_wind, wind_medium, wind_test)
    wind_level_high = fuzz.interp_membership(x_wind, wind_high, wind_test)
    
    
    
    
    rule1 = np.fmax(temp_level_hot, wind_level_low)
    cloth_res_low = np.fmin(rule1, cloth_low)
    cloth_res_medium = np.fmin(temp_level_warm, cloth_medium)
    rule2 = np.fmax(temp_level_cold, wind_level_high)
    cloth_res_high = np.fmin(rule2, cloth_high)
    clothes = np.zeros_like(x_clothes)
    
    plt.figure(figsize=(8, 3))
    plt.title("结果")
    plt.plot(x_clothes, cloth_low, 'b')
    plt.fill_between(x_clothes, 0, cloth_res_low)
    plt.plot(x_clothes, cloth_medium, 'g')
    plt.fill_between(x_clothes, 0, cloth_res_medium)
    plt.plot(x_clothes, cloth_high, 'r')
    plt.fill_between(x_clothes, 0, cloth_res_high)
    
    
    aggregated = np.fmax(cloth_res_low, np.fmax(cloth_res_medium, cloth_res_high))
    
    
    
    
    
    
    
    cloth = fuzz.defuzz(x_clothes, aggregated, 'mom')
    cloth_res = fuzz.interp_membership(x_clothes, aggregated, cloth)
    plt.figure(figsize=(8, 3))
    plt.title(f"去模糊化结果cloth:{cloth}")
    plt.plot(x_clothes, cloth_low, 'b')
    plt.plot(x_clothes, cloth_medium, 'g')
    plt.plot(x_clothes, cloth_high, 'r')
    plt.fill_between(x_clothes, 0, aggregated, facecolor='orange')
    plt.plot([cloth, cloth], [0, cloth_res], 'k')
    plt.show()