权重衰减从零开始实现
 
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5  
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05  
train_data = d2l.synthetic_data(true_w, true_b, n_train) 
train_iter = d2l.load_array(train_data, batch_size)  
test_data = d2l.synthetic_data(true_w, true_b, n_test) 
test_iter = d2l.load_array(test_data, batch_size, is_train=False)  
def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]
def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2  
def train(lambd):  
    w, b = init_params()  
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss  
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):  
        for X, y in train_iter:  
            
            
            l = loss(net(X), y) + lambd * l2_penalty(w)  
            l.sum().backward()  
            d2l.sgd([w, b], lr, batch_size)  
        if (epoch + 1) % 5 == 0:  
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())  
 
train(lambd=0)
d2l.plt.show()
 

 
train(lambd=5)
d2l.plt.show()
 

 
权重衰减的简洁实现
 
def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))   
    for param in net.parameters():   
        param.data.normal_()
    loss = nn.MSELoss(reduction='none')  
    num_epochs, lr = 100, 0.003
    
    
    
    trainer = torch.optim.SGD([
        {"params":net[0].weight,'weight_decay': wd},
        {"params":net[0].bias}], lr=lr)
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):   
        for X, y in train_iter:  
            trainer.zero_grad()   
            l = loss(net(X), y)  
            l.mean().backward() 
            trainer.step()  
        if (epoch + 1) % 5 == 0:   
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
 
train_concise(0)
 

 
train_concise(5)
 
