估计方法
扩展(Extension)
:
![Y(t)=\left[\begin{array}{c} y(t) \\ y(t-\tau) \end{array}\right] \quad X(t)=\left[\begin{array}{cc} x_{1}(t) & x_{2}(t) \\ x_{1}(t-\tau) & x_{2}(t-\tau) \end{array}\right]](https://file.cfanz.cn/uploads/gif/2022/04/29/17/P7fF528067.gif)

混合(Mixing)

其中![Z(t)=\left[\begin{array}{l} z_{1}(t) \\ z_{2}(t) \end{array}\right]=\operatorname{adj} X(t) Y(t), \Delta(t)=\operatorname{det} X(t)](https://file.cfanz.cn/uploads/gif/2022/04/29/17/BVS2c94e41.gif)
评估策略:

仿真
待估计系统:

编写m代码确定模型参数
theta = [1;2];
tau=0.5*pi;
gamma = 100;
simulink仿真模型:

使用估计参数的系统与原系统输出比较

模型及m文件下载地址:drem方法对系统参数进行估计-智慧城市文档类资源-CSDN下载
参考:Parameters Estimation via Dynamic Regressor Extension and Mixing 2016 American Control Conference (ACC) Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA










