Starting in 2009, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) began the process of generating annual crop type digital maps. Focusing on the Prairie Provinces in 2009 and 2010, a Decision Tree (DT) based methodology was applied using optical (Landsat-5, AWiFS, DMC) and radar (Radarsat-2) based satellite images. Beginning with the 2011 growing season, this activity has been extended to other provinces in support of a national crop inventory. To date this approach can consistently deliver a crop inventory that meets the overall target accuracy of at least 85% at a final spatial resolution of 30m (56m in 2009 and 2010).
从 2009 年开始,加拿大农业和农业食品部 (AAFC) 科技部 (STB) 的地球观测团队开始了生成一年生作物类型数字地图的过程。 2009 年和 2010 年以草原省份为重点,使用基于光学(Landsat-5、AWiFS、DMC)和雷达(Radarsat-2)的卫星图像应用了基于决策树 (DT) 的方法。从 2011 年的生长季节开始,这项活动已扩展到其他省份,以支持国家作物清单。迄今为止,这种方法可以始终如一地提供在最终空间分辨率为 30m(2009 年和 2010 年为 56m)时满足至少 85% 总体目标精度的作物清单。
Resolution
30 meters
Bands Table
Name  | Description  | Min  | Max  | 
landcover  | Main crop-specific land cover classification.  | 1  | 255  | 
Class Table: landcover
Value  | Color  | Color Value  | Description  | 
10  | #000000  | Cloud  | |
20  | #3333ff  | Water  | |
30  | #996666  | Exposed Land and Barren  | |
34  | #cc6699  | Urban and Developed  | |
35  | #e1e1e1  | Greenhouses  | |
50  | #ffff00  | Shrubland  | |
80  | #993399  | Wetland  | |
85  | #501b50  | Peatland  | |
110  | #cccc00  | Grassland  | |
120  | #cc6600  | Agriculture (undifferentiated)  | |
122  | #ffcc33  | Pasture and Forages  | |
130  | #7899f6  | Too Wet to be Seeded  | |
131  | #ff9900  | Fallow  | |
132  | #660000  | Cereals  | |
133  | #dae31d  | Barley  | |
134  | #d6cc00  | Other Grains  | |
135  | #d2db25  | Millet  | |
136  | #d1d52b  | Oats  | |
137  | #cace32  | Rye  | |
138  | #c3c63a  | Spelt  | |
139  | #b9bc44  | Triticale  | |
140  | #a7b34d  | Wheat  | |
141  | #b9c64e  | Switchgrass  | |
142  | #999900  | Quinoa  | |
142  | #999900  | Sorghum  | |
145  | #92a55b  | Winter Wheat  | |
146  | #809769  | Spring Wheat  | |
147  | #ffff99  | Corn  | |
148  | #98887c  | Tobacco  | |
149  | #799b93  | Ginseng  | |
150  | #5ea263  | Oilseeds  | |
151  | #52ae77  | Borage  | |
152  | #41bf7a  | Camelina  | |
153  | #d6ff70  | Canola and Rapeseed  | |
154  | #8c8cff  | Flaxseed  | |
155  | #d6cc00  | Mustard  | |
156  | #ff7f00  | Safflower  | |
157  | #315491  | Sunflower  | |
158  | #cc9933  | Soybeans  | |
160  | #896e43  | Pulses  | |
161  | #996633  | Other Pulses  | |
162  | #8f6c3d  | Peas  | |
163  | #b6a472  | Chickpeas  | |
167  | #82654a  | Beans  | |
168  | #a39069  | Fababeans  | |
174  | #b85900  | Lentils  | |
175  | #b74b15  | Vegetables  | |
176  | #ff8a8a  | Tomatoes  | |
177  | #ffcccc  | Potatoes  | |
178  | #6f55ca  | Sugarbeets  | |
179  | #ffccff  | Other Vegetables  | |
180  | #dc5424  | Fruits  | |
181  | #d05a30  | Berries  | |
182  | #d20000  | Blueberry  | |
183  | #cc0000  | Cranberry  | |
185  | #dc3200  | Other Berry  | |
188  | #ff6666  | Orchards  | |
189  | #c5453b  | Other Fruits  | |
190  | #7442bd  | Vineyards  | |
191  | #ffcccc  | Hops  | |
192  | #b5fb05  | Sod  | |
193  | #ccff05  | Herbs  | |
194  | #07f98c  | Nursery  | |
195  | #00ffcc  | Buckwheat  | |
196  | #cc33cc  | Canaryseed  | |
197  | #8e7672  | Hemp  | |
198  | #b1954f  | Vetch  | |
199  | #749a66  | Other Crops  | |
200  | #009900  | Forest (undifferentiated)  | |
210  | #006600  | Coniferous  | |
220  | #00cc00  | Broadleaf  | |
230  | #cc9900  | Mixedwood  | 
影像属性:
Name  | Type  | Description  | 
landcover_class_names  | List of Strings  | Array of cropland landcover classification names.  | 
landcover_class_palette  | List of Strings  | Array of hex code color strings used for the classification palette.  | 
landcover_class_values  | List of Ints  | Value of the land cover classification.  | 
引用:
Dataset Availability
2009-01-01T00:00:00 - 2019-01-01T00:00:00
Dataset Provider
Agriculture and Agri-Food Canada
Collection Snippet
ee.ImageCollection("AAFC/ACI")
Agriculture and Agri-Food Canada Annual Crop Inventory. {YEAR}
数据代码:
var dataset = ee.ImageCollection('AAFC/ACI');
var crop2016 = dataset
    .filter(ee.Filter.date('2016-01-01', '2016-12-31'))
    .first();
Map.setCenter(-103.8881, 53.0371, 10);
Map.addLayer(crop2016);
 
 
有需要研究加拿大农业生态的同学可以拿走!










