商代数
设 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R使 
     
      
       
       
         A 
        
       
         = 
        
        
        
          < 
         
        
          S 
         
        
          , 
         
         
         
           ∗ 
          
         
           1 
          
         
        
          , 
         
         
         
           ∗ 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ∗ 
          
         
           n 
          
         
        
          > 
         
        
       
      
        A = \left<S, *_1, *_2,\cdots, *_n\right> 
       
      
    A=⟨S,∗1,∗2,⋯,∗n⟩上的同余关系,则 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R使 
     
      
       
       
         S 
        
       
      
        S 
       
      
    S上的等价关系,因此 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R可诱导出 
     
      
       
       
         S 
        
       
      
        S 
       
      
    S的一个划分 
     
      
       
       
         S 
        
       
         / 
        
       
         R 
        
       
         = 
        
        
        
          { 
         
         
          
          
            [ 
           
          
            a 
           
          
            ] 
           
          
         
           R 
          
         
        
          ∣ 
         
        
          a 
         
        
          ∈ 
         
        
          S 
         
        
          } 
         
        
       
      
        S/ R = \left\{\left[a\right]_R | a \in S\right\} 
       
      
    S/R={[a]R∣a∈S}.对于运算 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i,定义 
     
      
       
       
         S 
        
       
         / 
        
       
         R 
        
       
      
        S/R 
       
      
    S/R上的同阶运算 
     
      
       
        
        
          ⊛ 
         
        
          i 
         
        
       
      
        \circledast_i 
       
      
    ⊛i为: 
     
      
       
       
         ∀ 
        
        
         
         
           [ 
          
          
          
            a 
           
          
            1 
           
          
         
           ] 
          
         
        
          R 
         
        
       
         , 
        
        
         
         
           [ 
          
          
          
            a 
           
          
            2 
           
          
         
           ] 
          
         
        
          R 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
         
         
           [ 
          
          
          
            a 
           
           
           
             n 
            
           
             i 
            
           
          
         
           ] 
          
         
        
          R 
         
        
       
         ∈ 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
      
        \forall \left[a_1\right]_R, \left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R \in S / R 
       
      
    ∀[a1]R,[a2]R,⋯,[ani]R∈S/R,
  
      
       
        
         
         
           ⊛ 
          
         
           i 
          
         
         
         
           ( 
          
          
           
           
             [ 
            
            
            
              a 
             
            
              1 
             
            
           
             ] 
            
           
          
            R 
           
          
         
           , 
          
          
           
           
             [ 
            
            
            
              a 
             
            
              2 
             
            
           
             ] 
            
           
          
            R 
           
          
         
           , 
          
         
           ⋯ 
           
         
           , 
          
          
           
           
             [ 
            
            
            
              a 
             
             
             
               n 
              
             
               i 
              
             
            
           
             ] 
            
           
          
            R 
           
          
         
           ) 
          
         
        
          = 
         
         
          
          
            [ 
           
           
           
             ∗ 
            
           
             i 
            
           
           
           
             ( 
            
            
            
              a 
             
            
              1 
             
            
           
             , 
            
            
            
              a 
             
            
              2 
             
            
           
             , 
            
           
             ⋯ 
             
           
             , 
            
            
            
              a 
             
             
             
               n 
              
             
               i 
              
             
            
           
             ) 
            
           
          
            ] 
           
          
         
           R 
          
         
        
       
         \circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R, \cdots,\left[a_{n_i}\right]_R\right) = \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R 
        
       
     ⊛i([a1]R,[a2]R,⋯,[ani]R)=[∗i(a1,a2,⋯,ani)]R
  
     
      
       
        
        
          ⊛ 
         
        
          i 
         
        
       
      
        \circledast_i 
       
      
    ⊛i是良定的,因为运算结果并不依赖于各等价类的代表元的选取:
若 
     
      
       
        
         
         
           [ 
          
          
          
            a 
           
          
            k 
           
          
         
           ] 
          
         
        
          R 
         
        
       
         = 
        
        
         
         
           [ 
          
          
          
            b 
           
          
            k 
           
          
         
           ] 
          
         
        
          R 
         
        
       
      
        \left[a_k\right]_R = \left[b_k\right]_R 
       
      
    [ak]R=[bk]R, 则 
     
      
       
        
        
          a 
         
        
          k 
         
        
       
         R 
        
        
        
          b 
         
        
          k 
         
        
       
      
        a_k R b_k 
       
      
    akRbk,因为 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R是 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A上的同余关系,所以
  
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
        
        
          ( 
         
         
         
           a 
          
         
           1 
          
         
        
          , 
         
         
         
           a 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           a 
          
          
          
            n 
           
          
            i 
           
          
         
        
          ) 
         
        
       
         R 
        
        
        
          ∗ 
         
        
          i 
         
        
        
        
          ( 
         
         
         
           b 
          
         
           1 
          
         
        
          , 
         
         
         
           b 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           b 
          
          
          
            n 
           
          
            i 
           
          
         
        
          ) 
         
        
       
      
        *_i\left(a_1,a_2,\cdots, a_{n_i}\right) R *_i\left(b_1,b_2,\cdots, b_{n_i}\right) 
       
      
    ∗i(a1,a2,⋯,ani)R∗i(b1,b2,⋯,bni),故
  
      
       
        
         
          
          
            [ 
           
           
           
             ∗ 
            
           
             i 
            
           
           
           
             ( 
            
            
            
              a 
             
            
              1 
             
            
           
             , 
            
            
            
              a 
             
            
              2 
             
            
           
             , 
            
           
             ⋯ 
             
           
             , 
            
            
            
              a 
             
             
             
               n 
              
             
               i 
              
             
            
           
             ) 
            
           
          
            ] 
           
          
         
           R 
          
         
        
          = 
         
         
          
          
            [ 
           
           
           
             ∗ 
            
           
             i 
            
           
           
           
             ( 
            
            
            
              b 
             
            
              1 
             
            
           
             , 
            
            
            
              b 
             
            
              2 
             
            
           
             , 
            
           
             ⋯ 
             
           
             , 
            
            
            
              b 
             
             
             
               n 
              
             
               i 
              
             
            
           
             ) 
            
           
          
            ] 
           
          
         
           R 
          
         
        
       
         \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R = \left[*_i\left(b_1,b_2,\cdots, b_{n_i}\right)\right]_R 
        
       
     [∗i(a1,a2,⋯,ani)]R=[∗i(b1,b2,⋯,bni)]R
设 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R是代数系统 
     
      
       
       
         A 
        
       
         = 
        
        
        
          < 
         
        
          S 
         
        
          , 
         
         
         
           ∗ 
          
         
           1 
          
         
        
          , 
         
         
         
           ∗ 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ∗ 
          
         
           n 
          
         
        
          > 
         
        
       
      
        A=\left<S, *_1, *_2,\cdots, *_n\right> 
       
      
    A=⟨S,∗1,∗2,⋯,∗n⟩删的同余关系,则称代数系统
  
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
         = 
        
        
        
          < 
         
        
          S 
         
        
          / 
         
        
          R 
         
        
          , 
         
         
         
           ⊛ 
          
         
           1 
          
         
        
          , 
         
         
         
           ⊛ 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ⊛ 
          
         
           n 
          
         
        
          > 
         
        
       
      
        A/R = \left<S/R, \circledast_1,\circledast_2,\cdots, \circledast_n\right> 
       
      
    A/R=⟨S/R,⊛1,⊛2,⋯,⊛n⟩为 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A关于 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R的商代数
定理1: 设 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R是代数系统 
     
      
       
       
         A 
        
       
         = 
        
        
        
          < 
         
        
          S 
         
        
          , 
         
         
         
           ∗ 
          
         
           1 
          
         
        
          , 
         
         
         
           ∗ 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ∗ 
          
         
           n 
          
         
        
          > 
         
        
       
      
        A = \left<S, *_1, *_2,\cdots, *_n\right> 
       
      
    A=⟨S,∗1,∗2,⋯,∗n⟩上的同余关系,函数 
     
      
       
       
         f 
        
       
         : 
        
       
         S 
        
       
         → 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
      
        f:S\to S/R 
       
      
    f:S→S/R定义为
  
     
      
       
       
         ∀ 
        
       
         a 
        
       
         ∈ 
        
       
         S 
        
       
         , 
        
       
         f 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
         = 
        
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
      
        \forall a \in S, f\left(a\right) = \left[a\right]_R 
       
      
    ∀a∈S,f(a)=[a]R,则 
     
      
       
       
         f 
        
       
      
        f 
       
      
    f是从 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A到商代数 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R的满同态,称为自然同态
证明:
  
     
      
       
       
         ∀ 
        
       
         i 
        
       
         ∈ 
        
       
         N 
        
        
        
          ( 
         
        
          1 
         
        
          ≤ 
         
        
          i 
         
        
          ≤ 
         
        
          n 
         
        
          ) 
         
        
       
         , 
        
       
         ∀ 
        
        
        
          a 
         
        
          1 
         
        
       
         , 
        
        
        
          a 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          a 
         
         
         
           n 
          
         
           i 
          
         
        
       
         ∈ 
        
       
         S 
        
       
      
        \forall i \in \mathbb{N}\left(1\le i \le n\right), \forall a_1, a_2,\cdots, a_{n_i} \in S 
       
      
    ∀i∈N(1≤i≤n),∀a1,a2,⋯,ani∈S
  
      
       
        
         
          
           
            
            
              f 
             
             
             
               ( 
              
              
              
                ∗ 
               
              
                i 
               
              
              
              
                ( 
               
               
               
                 a 
                
               
                 1 
                
               
              
                , 
               
               
               
                 a 
                
               
                 2 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  n 
                 
                
                  i 
                 
                
               
              
                ) 
               
              
             
               ) 
              
             
            
           
          
          
           
            
             
            
              = 
             
             
              
              
                [ 
               
               
               
                 ∗ 
                
               
                 i 
                
               
               
               
                 ( 
                
                
                
                  a 
                 
                
                  1 
                 
                
               
                 , 
                
                
                
                  a 
                 
                
                  2 
                 
                
               
                 , 
                
               
                 ⋯ 
                 
               
                 , 
                
                
                
                  a 
                 
                 
                 
                   n 
                  
                 
                   i 
                  
                 
                
               
                 ) 
                
               
              
                ] 
               
              
             
               R 
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               ⊛ 
              
             
               i 
              
             
             
             
               ( 
              
              
               
               
                 [ 
                
                
                
                  a 
                 
                
                  1 
                 
                
               
                 ] 
                
               
              
                R 
               
              
             
               , 
              
              
               
               
                 [ 
                
                
                
                  a 
                 
                
                  2 
                 
                
               
                 ] 
                
               
              
                R 
               
              
             
               , 
              
             
               ⋯ 
               
             
               , 
              
              
               
               
                 [ 
                
                
                
                  a 
                 
                 
                 
                   n 
                  
                 
                   i 
                  
                 
                
               
                 ] 
                
               
              
                R 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               ⊛ 
              
             
               i 
              
             
             
             
               ( 
              
             
               f 
              
              
              
                ( 
               
               
               
                 a 
                
               
                 1 
                
               
              
                ) 
               
              
             
               , 
              
             
               f 
              
              
              
                ( 
               
               
               
                 a 
                
               
                 2 
                
               
              
                ) 
               
              
             
               , 
              
             
               ⋯ 
               
             
               , 
              
             
               f 
              
              
              
                ( 
               
               
               
                 a 
                
                
                
                  n 
                 
                
                  i 
                 
                
               
              
                ) 
               
              
             
               ) 
              
             
            
           
          
         
        
       
         \begin{aligned} f\left(*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right) &= \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R\\ &=\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R, \cdots,\left[a_{n_i}\right]_R\right)\\ &=\circledast_i\left(f\left(a_1\right),f\left(a_2\right), \cdots,f\left(a_{n_i}\right)\right) \end{aligned} 
        
       
     f(∗i(a1,a2,⋯,ani))=[∗i(a1,a2,⋯,ani)]R=⊛i([a1]R,[a2]R,⋯,[ani]R)=⊛i(f(a1),f(a2),⋯,f(ani))
 所以 
     
      
       
       
         f 
        
       
      
        f 
       
      
    f为 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A到 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R的同态。
 又 
     
      
       
       
         ∀ 
        
       
         x 
        
       
         ∈ 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
         , 
        
       
         ∃ 
        
       
         a 
        
       
         ∈ 
        
       
         S 
        
       
      
        \forall x \in S/R,\exists a \in S 
       
      
    ∀x∈S/R,∃a∈S,使得 
     
      
       
       
         x 
        
       
         = 
        
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
      
        x = \left[a\right]_R 
       
      
    x=[a]R,于是 
     
      
       
       
         f 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
         = 
        
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
         = 
        
       
         x 
        
       
      
        f\left(a\right) = \left[a\right]_R = x 
       
      
    f(a)=[a]R=x,所以 
     
      
       
       
         f 
        
       
      
        f 
       
      
    f满射。故 
     
      
       
       
         f 
        
       
      
        f 
       
      
    f为 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A到 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R的满同态
 由于 
     
      
       
       
         f 
        
       
      
        f 
       
      
    f是从 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A到 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R的满同态,因此 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A的主要代数性质再其商代数 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R中仍然保持
定理2: 设 
     
      
       
       
         h 
        
       
      
        h 
       
      
    h是从 
     
      
       
       
         A 
        
       
         = 
        
        
        
          < 
         
        
          S 
         
        
          , 
         
         
         
           ∗ 
          
         
           1 
          
         
        
          , 
         
         
         
           ∗ 
          
         
           2 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ∗ 
          
         
           n 
          
         
        
          > 
         
        
       
      
        A=\left<S, *_1, *_2,\cdots, *_n\right> 
       
      
    A=⟨S,∗1,∗2,⋯,∗n⟩到 
     
      
       
        
        
          A 
         
        
          ′ 
         
        
       
         = 
        
        
        
          < 
         
         
         
           S 
          
         
           ′ 
          
         
        
          , 
         
         
         
           ∗ 
          
         
           1 
          
         
           ′ 
          
         
        
          , 
         
         
         
           ∗ 
          
         
           2 
          
         
           ′ 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ∗ 
          
         
           n 
          
         
           ′ 
          
         
        
          > 
         
        
       
      
        A^{\prime}=\left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> 
       
      
    A′=⟨S′,∗1′,∗2′,⋯,∗n′⟩的同态
  
     
      
       
       
         R 
        
       
      
        R 
       
      
    R是 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A上由 
     
      
       
       
         h 
        
       
      
        h 
       
      
    h诱导的同余关系, 
     
      
       
       
         f 
        
       
      
        f 
       
      
    f是从 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A到商代数 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R的自然同态,那么存在从 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R到 
     
      
       
       
         h 
        
        
        
          ( 
         
        
          A 
         
        
          ) 
         
        
       
      
        h\left(A\right) 
       
      
    h(A)的同构 
     
      
       
       
         g 
        
       
      
        g 
       
      
    g,使得 
     
      
       
       
         g 
        
       
         ∘ 
        
       
         f 
        
       
         = 
        
       
         h 
        
       
      
        g\circ f = h 
       
      
    g∘f=h
证明:
 
作 
     
      
       
       
         g 
        
       
         : 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
         → 
        
       
         h 
        
        
        
          ( 
         
        
          S 
         
        
          ) 
         
        
       
         , 
        
       
         [ 
        
       
         a 
        
        
        
          ] 
         
        
          R 
         
        
       
         ↦ 
        
       
         h 
        
       
         ( 
        
       
         a 
        
       
         ) 
        
       
      
        g:S/R \to h\left(S\right), [a]_R \mapsto h(a) 
       
      
    g:S/R→h(S),[a]R↦h(a)
 1. 
     
      
       
       
         g 
        
       
      
        g 
       
      
    g是良定的, 
     
      
       
       
         ∀ 
        
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
         , 
        
        
         
         
           [ 
          
         
           b 
          
         
           ] 
          
         
        
          R 
         
        
       
         ∈ 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
      
        \forall \left[a\right]_R, \left[b\right]_R \in S / R 
       
      
    ∀[a]R,[b]R∈S/R,若 
     
      
       
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
         = 
        
        
         
         
           [ 
          
         
           b 
          
         
           ] 
          
         
        
          R 
         
        
       
      
        \left[a\right]_R = \left[b\right]_R 
       
      
    [a]R=[b]R,则 
     
      
       
       
         a 
        
       
         R 
        
       
         b 
        
       
      
        aRb 
       
      
    aRb,所以 
     
      
       
       
         h 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
         = 
        
       
         h 
        
        
        
          ( 
         
        
          b 
         
        
          ) 
         
        
       
      
        h\left(a\right) = h\left(b\right) 
       
      
    h(a)=h(b)
 2. 
     
      
       
       
         g 
        
       
      
        g 
       
      
    g是单射。 
     
      
       
       
         ∀ 
        
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
         , 
        
        
         
         
           [ 
          
         
           b 
          
         
           ] 
          
         
        
          R 
         
        
       
         ∈ 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
      
        \forall \left[a\right]_R, \left[b\right]_R\in S/R 
       
      
    ∀[a]R,[b]R∈S/R,若 
     
      
       
       
         g 
        
        
        
          ( 
         
         
          
          
            [ 
           
          
            a 
           
          
            ] 
           
          
         
           R 
          
         
        
          ) 
         
        
       
         = 
        
       
         g 
        
        
        
          ( 
         
         
          
          
            [ 
           
          
            b 
           
          
            ] 
           
          
         
           R 
          
         
        
          ) 
         
        
       
      
        g\left(\left[a\right]_R\right) = g\left(\left[b\right]_R\right) 
       
      
    g([a]R)=g([b]R),则 
     
      
       
       
         h 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
         = 
        
       
         h 
        
        
        
          ( 
         
        
          b 
         
        
          ) 
         
        
       
      
        h\left(a\right) = h\left(b\right) 
       
      
    h(a)=h(b),所以 
     
      
       
       
         a 
        
       
         R 
        
       
         b 
        
       
         , 
        
        
         
         
           [ 
          
         
           a 
          
         
           ] 
          
         
        
          R 
         
        
       
         = 
        
        
         
         
           [ 
          
         
           b 
          
         
           ] 
          
         
        
          R 
         
        
       
      
        aRb, \left[a\right]_R= \left[b\right]_R 
       
      
    aRb,[a]R=[b]R
 3. 
     
      
       
       
         g 
        
       
      
        g 
       
      
    g是满射, 
     
      
       
       
         ∀ 
        
       
         x 
        
       
         ∈ 
        
       
         h 
        
        
        
          ( 
         
        
          S 
         
        
          ) 
         
        
       
         , 
        
       
         ∃ 
        
       
         a 
        
       
         ∈ 
        
       
         S 
        
       
      
        \forall x \in h\left(S\right),\exists a \in S 
       
      
    ∀x∈h(S),∃a∈S,使得 
     
      
       
       
         h 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
         = 
        
       
         x 
        
       
      
        h\left(a\right) = x 
       
      
    h(a)=x,所以
  
      
       
        
        
          g 
         
         
         
           ( 
          
          
           
           
             [ 
            
           
             a 
            
           
             ] 
            
           
          
            R 
           
          
         
           ) 
          
         
        
          = 
         
        
          h 
         
         
         
           ( 
          
         
           a 
          
         
           ) 
          
         
        
          = 
         
        
          x 
         
        
       
         g\left(\left[a\right]_R\right) = h\left(a\right) = x 
        
       
     g([a]R)=h(a)=x
 4. 
     
      
       
       
         g 
        
       
      
        g 
       
      
    g是同态, 
     
      
       
       
         ∀ 
        
       
         i 
        
       
         ∈ 
        
       
         N 
        
        
        
          ( 
         
        
          1 
         
        
          ≤ 
         
        
          i 
         
        
          ≤ 
         
        
          n 
         
        
          ) 
         
        
       
         , 
        
       
         ∀ 
        
        
         
         
           [ 
          
          
          
            a 
           
          
            1 
           
          
         
           ] 
          
         
        
          R 
         
        
       
         , 
        
        
         
         
           [ 
          
          
          
            a 
           
          
            2 
           
          
         
           ] 
          
         
        
          R 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
         
         
           [ 
          
          
          
            a 
           
           
           
             n 
            
           
             i 
            
           
          
         
           ] 
          
         
        
          R 
         
        
       
         ∈ 
        
       
         S 
        
       
         / 
        
       
         R 
        
       
      
        \forall i \in \mathbb{N}\left(1\le i \le n\right) ,\forall \left[a_1\right]_R,\left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R \in S/ R 
       
      
    ∀i∈N(1≤i≤n),∀[a1]R,[a2]R,⋯,[ani]R∈S/R
 
      
       
        
         
          
           
            
           
          
          
           
            
             
            
              g 
             
             
             
               ( 
              
              
              
                ⊛ 
               
              
                i 
               
              
              
              
                ( 
               
               
                
                
                  [ 
                 
                 
                 
                   a 
                  
                 
                   1 
                  
                 
                
                  ] 
                 
                
               
                 R 
                
               
              
                , 
               
               
                
                
                  [ 
                 
                 
                 
                   a 
                  
                 
                   2 
                  
                 
                
                  ] 
                 
                
               
                 R 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
                
                
                  [ 
                 
                 
                 
                   a 
                  
                  
                  
                    n 
                   
                  
                    i 
                   
                  
                 
                
                  ] 
                 
                
               
                 R 
                
               
              
                ) 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
           
             = 
            
           
          
          
           
            
             
            
              g 
             
             
             
               ( 
              
              
               
               
                 [ 
                
                
                
                  ∗ 
                 
                
                  i 
                 
                
                
                
                  ( 
                 
                 
                 
                   a 
                  
                 
                   1 
                  
                 
                
                  , 
                 
                 
                 
                   a 
                  
                 
                   2 
                  
                 
                
                  , 
                 
                
                  ⋯ 
                  
                
                  , 
                 
                 
                 
                   a 
                  
                  
                  
                    n 
                   
                  
                    i 
                   
                  
                 
                
                  ) 
                 
                
               
                 ] 
                
               
              
                R 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
           
             = 
            
           
          
          
           
            
             
            
              h 
             
             
             
               ( 
              
              
              
                ∗ 
               
              
                i 
               
              
              
              
                ( 
               
               
               
                 a 
                
               
                 1 
                
               
              
                , 
               
               
               
                 a 
                
               
                 2 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  n 
                 
                
                  i 
                 
                
               
              
                ) 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
           
             = 
            
           
          
          
           
            
             
             
             
               ∗ 
              
             
               i 
              
             
               ′ 
              
             
             
             
               ( 
              
             
               h 
              
              
              
                ( 
               
               
               
                 a 
                
               
                 1 
                
               
              
                ) 
               
              
             
               , 
              
             
               h 
              
              
              
                ( 
               
               
               
                 a 
                
               
                 2 
                
               
              
                ) 
               
              
             
               , 
              
             
               ⋯ 
               
             
               , 
              
             
               h 
              
              
              
                ( 
               
               
               
                 a 
                
                
                
                  n 
                 
                
                  i 
                 
                
               
              
                ) 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
           
             = 
            
           
          
          
           
            
             
             
             
               ∗ 
              
             
               i 
              
             
               ′ 
              
             
             
             
               ( 
              
             
               g 
              
              
              
                ( 
               
               
                
                
                  [ 
                 
                 
                 
                   a 
                  
                 
                   1 
                  
                 
                
                  ] 
                 
                
               
                 R 
                
               
              
                ) 
               
              
             
               , 
              
             
               g 
              
              
              
                ( 
               
               
                
                
                  [ 
                 
                 
                 
                   a 
                  
                 
                   2 
                  
                 
                
                  ] 
                 
                
               
                 R 
                
               
              
                ) 
               
              
             
               , 
              
             
               ⋯ 
               
             
               , 
              
             
               g 
              
              
              
                ( 
               
               
                
                
                  [ 
                 
                 
                 
                   a 
                  
                  
                  
                    n 
                   
                  
                    i 
                   
                  
                 
                
                  ] 
                 
                
               
                 R 
                
               
              
                ) 
               
              
             
               ) 
              
             
            
           
          
         
        
       
         \begin{aligned} &g\left(\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R\right)\right)\\ =&g\left(\left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R\right)\\ =&h\left(*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right)\\ =&*_i^{\prime}\left(h\left(a_1\right), h\left(a_2\right),\cdots, h\left(a_{n_i}\right)\right)\\ =&*_i^{\prime}\left(g\left(\left[a_1\right]_R\right), g\left(\left[a_2\right]_R\right), \cdots, g\left(\left[a_{n_i}\right]_R\right)\right) \end{aligned} 
        
       
     ====g(⊛i([a1]R,[a2]R,⋯,[ani]R))g([∗i(a1,a2,⋯,ani)]R)h(∗i(a1,a2,⋯,ani))∗i′(h(a1),h(a2),⋯,h(ani))∗i′(g([a1]R),g([a2]R),⋯,g([ani]R))
 故 
     
      
       
       
         g 
        
       
      
        g 
       
      
    g是从 
     
      
       
       
         A 
        
       
         / 
        
       
         R 
        
       
      
        A/R 
       
      
    A/R到 
     
      
       
       
         h 
        
        
        
          ( 
         
        
          A 
         
        
          ) 
         
        
       
      
        h\left(A\right) 
       
      
    h(A)的同构
 并且 
     
      
       
       
         ∀ 
        
       
         a 
        
       
         ∈ 
        
       
         S 
        
       
         , 
        
       
         g 
        
       
         ∘ 
        
       
         f 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
         = 
        
       
         g 
        
        
        
          ( 
         
        
          f 
         
         
         
           ( 
          
         
           a 
          
         
           ) 
          
         
        
          ) 
         
        
       
         = 
        
       
         g 
        
        
        
          ( 
         
         
          
          
            [ 
           
          
            a 
           
          
            ] 
           
          
         
           R 
          
         
        
          ) 
         
        
       
         = 
        
       
         h 
        
        
        
          ( 
         
        
          a 
         
        
          ) 
         
        
       
      
        \forall a \in S, g\circ f\left(a\right) = g\left(f\left(a\right)\right) = g\left(\left[a\right]_R\right) = h\left(a\right) 
       
      
    ∀a∈S,g∘f(a)=g(f(a))=g([a]R)=h(a),故 
     
      
       
       
         g 
        
       
         ∘ 
        
       
         f 
        
       
         = 
        
       
         h 
        
       
      
        g\circ f = h 
       
      
    g∘f=h
推论:设 
     
      
       
       
         h 
        
       
      
        h 
       
      
    h是从 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A到 
     
      
       
        
        
          A 
         
        
          ′ 
         
        
       
      
        A^{\prime} 
       
      
    A′的满同态, 
     
      
       
       
         R 
        
       
      
        R 
       
      
    R是 
     
      
       
       
         A 
        
       
      
        A 
       
      
    A上由 
     
      
       
       
         h 
        
       
      
        h 
       
      
    h诱导的同余关系,则
  
      
       
        
        
          A 
         
        
          / 
         
        
          R 
         
        
          ≅ 
         
         
         
           A 
          
         
           ′ 
          
         
        
       
         A/R \cong A^{\prime} 
        
       
     A/R≅A′
积代数
设 
     
      
       
        
        
          A 
         
        
          i 
         
        
       
         = 
        
        
        
          < 
         
         
         
           S 
          
         
           i 
          
         
        
          , 
         
         
         
           ∗ 
          
          
          
            i 
           
          
            1 
           
          
         
        
          , 
         
         
         
           ∗ 
          
          
          
            i 
           
          
            2 
           
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           ∗ 
          
          
          
            i 
           
          
            n 
           
          
         
        
          > 
         
        
        
        
          ( 
         
        
          i 
         
        
          = 
         
        
          1 
         
        
          , 
         
        
          2 
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
        
          m 
         
        
          ) 
         
        
       
      
        A_i=\left<S_i, *_{i1}, *_{i2},\cdots, *_{in}\right>\left(i=1,2,\cdots, m\right) 
       
      
    Ai=⟨Si,∗i1,∗i2,⋯,∗in⟩(i=1,2,⋯,m)为同型的代数系统,
 则 
     
      
       
        
        
          A 
         
        
          1 
         
        
       
         , 
        
        
        
          A 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          A 
         
        
          m 
         
        
       
      
        A_1,A_2,\cdots, A_m 
       
      
    A1,A2,⋯,Am的积代数 
     
      
       
        
        
          × 
         
         
         
           i 
          
         
           = 
          
         
           1 
          
         
        
          m 
         
        
        
        
          A 
         
        
          i 
         
        
       
      
        \times_{i=1}^{m}A_i 
       
      
    ×i=1mAi定义为代数系统 
     
      
       
       
         < 
        
        
        
          × 
         
         
         
           i 
          
         
           = 
          
         
           1 
          
         
        
          m 
         
        
        
        
          S 
         
        
          i 
         
        
       
         , 
        
        
        
          ∗ 
         
        
          1 
         
        
       
         , 
        
        
        
          ∗ 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          ∗ 
         
        
          n 
         
        
       
         > 
        
       
      
        \left<\times_{i=1}^{m} S_i,*_1,*_2,\cdots, *_n\right> 
       
      
    ⟨×i=1mSi,∗1,∗2,⋯,∗n⟩,其中运算 
     
      
       
        
        
          ∗ 
         
        
          j 
         
        
       
      
        *_j 
       
      
    ∗j定义如下:
  
     
      
       
       
         ∀ 
        
        
        
          < 
         
         
         
           a 
          
         
           11 
          
         
        
          , 
         
         
         
           a 
          
         
           21 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           a 
          
          
          
            m 
           
          
            1 
           
          
         
        
          > 
         
        
       
         , 
        
        
        
          < 
         
         
         
           a 
          
         
           12 
          
         
        
          , 
         
         
         
           a 
          
         
           22 
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           a 
          
          
          
            m 
           
          
            2 
           
          
         
        
          > 
         
        
       
         , 
        
       
         ⋯ 
        
        
        
          < 
         
         
         
           a 
          
          
          
            1 
           
           
           
             n 
            
           
             j 
            
           
          
         
        
          , 
         
         
         
           a 
          
          
          
            2 
           
           
           
             n 
            
           
             j 
            
           
          
         
        
          , 
         
        
          ⋯ 
          
        
          , 
         
         
         
           a 
          
          
          
            m 
           
           
           
             n 
            
           
             j 
            
           
          
         
        
          > 
         
        
       
         ∈ 
        
       
         S 
        
       
         1 
        
       
         × 
        
        
        
          S 
         
        
          2 
         
        
       
         × 
        
       
         ⋯ 
        
       
         × 
        
        
        
          S 
         
        
          m 
         
        
       
      
        \forall \left<a_{11}, a_{21},\cdots, a_{m1}\right>, \left<a_{12}, a_{22},\cdots, a_{m2}\right>,\cdots \left<a_{1n_{j}}, a_{2n_{j}},\cdots, a_{mn_{j}}\right>\in S1\times S_2\times \cdots \times S_m 
       
      
    ∀⟨a11,a21,⋯,am1⟩,⟨a12,a22,⋯,am2⟩,⋯⟨a1nj,a2nj,⋯,amnj⟩∈S1×S2×⋯×Sm,
  
      
       
        
         
          
           
            
           
          
          
           
            
             
             
             
               ∗ 
              
             
               j 
              
             
             
             
               ( 
              
              
              
                ⟨ 
               
               
               
                 a 
                
               
                 11 
                
               
              
                , 
               
               
               
                 a 
                
               
                 21 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  m 
                 
                
                  1 
                 
                
               
              
                ⟩ 
               
              
             
               , 
              
              
              
                ⟨ 
               
               
               
                 a 
                
               
                 12 
                
               
              
                , 
               
               
               
                 a 
                
               
                 22 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  m 
                 
                
                  2 
                 
                
               
              
                ⟩ 
               
              
             
               , 
              
             
               ⋯ 
               
             
               , 
              
              
              
                ⟨ 
               
               
               
                 a 
                
                
                
                  1 
                 
                 
                 
                   n 
                  
                 
                   j 
                  
                 
                
               
              
                , 
               
               
               
                 a 
                
                
                
                  2 
                 
                 
                 
                   n 
                  
                 
                   j 
                  
                 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  m 
                 
                 
                 
                   n 
                  
                 
                   j 
                  
                 
                
               
              
                ⟩ 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               ⟨ 
              
              
              
                ∗ 
               
               
               
                 1 
                
               
                 j 
                
               
              
              
              
                ( 
               
               
               
                 a 
                
               
                 11 
                
               
              
                , 
               
               
               
                 a 
                
               
                 12 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  1 
                 
                 
                 
                   n 
                  
                 
                   j 
                  
                 
                
               
              
                ) 
               
              
             
               , 
              
              
              
                ∗ 
               
               
               
                 2 
                
               
                 j 
                
               
              
              
              
                ( 
               
               
               
                 a 
                
               
                 21 
                
               
              
                , 
               
               
               
                 a 
                
               
                 22 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  2 
                 
                 
                 
                   n 
                  
                 
                   j 
                  
                 
                
               
              
                ) 
               
              
             
               , 
              
             
               ⋯ 
               
             
               , 
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
             
              
             
               ∗ 
              
              
               
               
               
                 m 
                
               
                 j 
                
               
              
              
              
                ( 
               
               
               
                 a 
                
                
                
                  m 
                 
                
                  1 
                 
                
               
              
                , 
               
               
               
                 a 
                
                
                
                  m 
                 
                
                  2 
                 
                
               
              
                , 
               
              
                ⋯ 
                
              
                , 
               
               
               
                 a 
                
                
                
                  m 
                 
                 
                 
                   n 
                  
                 
                   j 
                  
                 
                
               
              
                ) 
               
              
             
               ⟩ 
              
             
            
              . 
             
            
           
          
         
        
       
         \begin{aligned} & *_j\left(\left\langle a_{11}, a_{21}, \cdots, a_{m 1}\right\rangle,\left\langle a_{12}, a_{22}, \cdots, a_{m 2}\right\rangle, \cdots,\left\langle a_{1 n_j}, a_{2 n_j}, \cdots, a_{m n_j}\right\rangle\right) \\ & =\left\langle *_{1 j}\left(a_{11}, a_{12}, \cdots, a_{1 n_j}\right), *_{2 j}\left(a_{21}, a_{22}, \cdots, a_{2 n_j}\right), \cdots,\right. \\ & \left.\quad *{ }_{m j}\left(a_{m 1}, a_{m 2}, \cdots, a_{m n_j}\right)\right\rangle . \end{aligned} 
        
       
     ∗j(⟨a11,a21,⋯,am1⟩,⟨a12,a22,⋯,am2⟩,⋯,⟨a1nj,a2nj,⋯,amnj⟩)=⟨∗1j(a11,a12,⋯,a1nj),∗2j(a21,a22,⋯,a2nj),⋯,∗mj(am1,am2,⋯,amnj)⟩.
定理: 设 A i = < S i , ∗ i , + i > A_i = \left<S_i, *_i, +_i\right> Ai=⟨Si,∗i,+i⟩为同型的代数系统, ∗ i *_i ∗i和 + i +_i +i为二元运算,积代数 × i = 1 m A i = < × i = 1 m S i , ∗ , + > \times_{i=1}^{m}A_i=\left<\times_{i=1}^{m}S_i, *, +\right> ×i=1mAi=⟨×i=1mSi,∗,+⟩
(1)若 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i可交换,则 
     
      
       
       
         ∗ 
        
       
      
        * 
       
      
    ∗也是可交换的
 (2)若 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i是可结合的,则 
     
      
       
       
         ∗ 
        
       
      
        * 
       
      
    ∗也是可结合的
 (3)若 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i关于 
     
      
       
        
        
          + 
         
        
          i 
         
        
       
      
        +_i 
       
      
    +i是可分配的,则 
     
      
       
       
         ∗ 
        
       
      
        * 
       
      
    ∗关于 
     
      
       
       
         + 
        
       
      
        + 
       
      
    +也是可分配的
 (4)若 
     
      
       
        
        
          e 
         
        
          i 
         
        
       
      
        e_i 
       
      
    ei是关于 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i的单位元,则 
     
      
       
       
         < 
        
        
        
          e 
         
        
          1 
         
        
       
         , 
        
        
        
          e 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          e 
         
        
          m 
         
        
       
         > 
        
       
      
        \left<e_1,e_2,\cdots, e_m\right> 
       
      
    ⟨e1,e2,⋯,em⟩是关于 
     
      
       
       
         ∗ 
        
       
      
        * 
       
      
    ∗的单位元
 (5)若 
     
      
       
        
        
          0 
         
        
          i 
         
        
       
      
        0_i 
       
      
    0i是关于 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i的零元,则 
     
      
       
       
         < 
        
        
        
          0 
         
        
          1 
         
        
       
         , 
        
        
        
          0 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          0 
         
        
          m 
         
        
       
         > 
        
       
      
        \left<0_1,0_2,\cdots, 0_m\right> 
       
      
    ⟨01,02,⋯,0m⟩是关于 
     
      
       
       
         ∗ 
        
       
      
        * 
       
      
    ∗的零元
 (6)若 
     
      
       
        
        
          a 
         
        
          i 
         
        
       
         ∈ 
        
        
        
          S 
         
        
          i 
         
        
       
      
        a_i\in S_i 
       
      
    ai∈Si关于 
     
      
       
        
        
          ∗ 
         
        
          i 
         
        
       
      
        *_i 
       
      
    ∗i由逆元 
     
      
       
        
        
          a 
         
         
         
           − 
          
         
           1 
          
         
        
       
      
        a^{-1} 
       
      
    a−1,则 
     
      
       
       
         < 
        
        
        
          a 
         
        
          1 
         
        
       
         , 
        
        
        
          a 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          a 
         
        
          m 
         
        
       
         > 
        
       
      
        \left<a_1,a_2,\cdots, a_m\right> 
       
      
    ⟨a1,a2,⋯,am⟩关于 
     
      
       
       
         ∗ 
        
       
      
        * 
       
      
    ∗由逆元 
     
      
       
       
         < 
        
        
        
          a 
         
        
          1 
         
         
         
           − 
          
         
           1 
          
         
        
       
         , 
        
        
        
          a 
         
        
          2 
         
         
         
           − 
          
         
           1 
          
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          a 
         
        
          m 
         
         
         
           − 
          
         
           1 
          
         
        
       
         > 
        
       
      
        \left<a_1^{-1},a_2^{-1},\cdots, a_m^{-1}\right> 
       
      
    ⟨a1−1,a2−1,⋯,am−1⟩





