MySQL两种存储引擎及索引对比
前言
MySQL是怎么存储数据的呢?
在之前我们聊过了**为什么 MySQL 索引要用 B+tree ,而且还这么快。**里面曾多处提到了找数据要从我们电脑的磁盘上找,今天就来说一说 MySQL 中的数据在磁盘上,它到底是如何进行存储的?长什么样?
存储引擎
百度百科是这样定义存储引擎的:MySQL 中的数据用各种不同的技术存储在文件(或者内存)中,这些不同的技术以及配套的相关功能在 MySQL 中被称作存储引擎。
简单来说就是**不同的存储引擎,我们的数据存储的格式也会不一样。**就好比图片有不同的格式,比如:.jpg, .png, .gif 等等……
现在 MySQL 中常用的存储引擎有两种:MyISAM 和 InnoDB。
MySQL 5.5之前,MyISAM 是默认的存储引擎。
MySQL 5.5开始,InnoDB 是默认的存储引擎。
主要区别
| MyISAM | InnoDB | |
|---|---|---|
| 事务 | 不支持❌ | 支持 |
| 表/行锁 | 只有表锁 | 还引入了行锁 |
| 外键 | 不支持❌ | 支持✔ |
| 全文索引 | 支持✔ | 版本5.6 开始支持 |
| 读写速度 | 更快 | 更慢 |
MyISAM 最致命的一点就是不支持事务,而 InnoDB 支持。所以现在 InnoDB 已经成为我们使用的标配、最主流的存储引擎了。
相关命令
查询当前数据库支持的存储引擎
show engines;
查询当前默认的存储引擎
show variables like '%storage_engine%';
查询表的相关信息
show table status like '表名';
存储引擎1: MyISAM
每个 MyISAM 表都以3个文件存储在磁盘上。这些文件的名称以表名开头,以扩展名指示文件类型。
.frm 文件(frame)存储表结构;
.MYD 文件(MY Data)存储表数据;
.MYI 文件(MY Index)存储表索引。
MySQL 里的数据默认是存放在安装目录下的 data 文件夹中,也可以自己修改。

下面我创建了以 MyISAM 作为存储引擎的一张表 t_user_myisam。
CREATE TABLE `t_user_myisam` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键ID',
`name` varchar(50) DEFAULT NULL COMMENT '姓名',
`age` int(3) DEFAULT NULL COMMENT '年龄',
PRIMARY KEY (`id`)
) ENGINE=MyISAM AUTO_INCREMENT=12 DEFAULT CHARSET=utf8mb4 COMMENT='测试用户表';

.MYI 文件组织索引的方式就是 B+tree。叶子节点的 value 处存放的就是索引所在行的磁盘文件地址。

底层查找过程:
首先会判断查找条件 where 中的字段是否是索引字段,如果是就会先拿着这字段去 .MYI 文件里通过 B+tree 快速定位,从根节点开始定位查找;
找到后再把这个索引关键字(就是我们的条件)存放的磁盘文件地址拿到 .MYD 文件里面找,从而定位到索引所在行的记录。

存储引擎2: InnoDB
一张 InnoDB 表底层会对应2个文件在文件夹中进行数据存储。
.frm 文件(frame)存储表结构;
.ibd 文件(InnoDB Data)存储表索引+数据。
下面我创建了以 InnoDB 作为存储引擎的一张表 t_user_innodb。
CREATE TABLE `t_user_innodb` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键ID',
`name` varchar(50) DEFAULT NULL COMMENT '姓名',
`age` int(3) DEFAULT NULL COMMENT '年龄',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='测试用户表';

很显然,InnoDB 把索引和数据都放在一个文件里存着了。毫无疑问,InnoDB 表里面的数据也是用 B+tree 数据结构组织起来的。
下面我们来看看它具体是怎么存储的。

.ibd 存储数据的特点就是 B+tree 的叶子节点上包括了我们要的索引和该索引所在行的其它列数据。
底层查找过程:
首先会判断查找条件 where 中的字段是否是索引字段,如果是就会先拿着这字段去 .ibd 文件里通过 B+tree 快速定位,从根节点开始定位查找;
找到后直接把这个索引关键字及其记录所在行的其它列数据返回。

其他存储引擎:
我们在新建表的时候, 可以选择不同的存储引擎, 如下图: 其他引擎确实没有用过, 这里不再看了, 反正也用不到. 😂

索引
聚集(聚簇)索引
聚集索引:叶子节点包含了完整的数据记录。
简单来说就是索引和它所在行的其它列数据全部都在一起了。
很显然,MyISAM 没有聚集索引,InnoDB 有,而且 InnoDB 的主键索引就是天然的聚集索引。
有聚集索引当然就有非聚集索引(稀疏索引)。对于 MyISAM 来说,它的索引就是非聚集索引。因为它的索引和数据是分开两个文件存的:一个 .MYI 存索引,一个 .MYD 存数据。
二级索引
除聚集索引之外的所有索引都叫做二级索引,也称辅助索引。
它的叶子节点则不会存储其它所有列的数据,就只存储主键值。

底层查找过程:
每次要找数据的时候,会根据它找到对应叶子节点的主键值,再把它拿到聚集索引的 B+tree 中查找,从而拿到整条记录。

优点:保持一致性和节省空间。
常见面试题
为什么 DBA 都建议表中一定要有主键,而且推荐使用整型自增?
为什么要有主键?
因为 InnoDB 表里面的数据必须要有一个 B+tree 的索引结构来组织、维护我们的整张表的所有数据,从而形成 .idb 文件。
那和主键有什么关系?
如果 InnoDB 创建了一张没有主键的表,那这张表就有可能没有任何索引,则 MySQL会选择所有具有唯一性并且不为 null 中的第一个字段的创建聚集索引。
如果没有唯一性索引的字段就会有一个隐式字段成为表的聚集索引:而这个隐式字段,就是 InnoDB 帮我们创建的一个长度为 6字节 的整数列 ROW_ID,它随着新行的插入单调增加,InnoDB 就以该列对数据进行聚集。
使用这个 ROW_ID 列的表都共享一个相同的全局序列计数器(这是数据字典的一部分)。为了避免这个 ROW_ID 用完,所以建议表中一定要单独建立一个主键字段。
为什么推荐使用整型自增?
首先整型的占用空间会比字符串小,而且在查找上比大小也会比字符串更快。字符串比大小的时候还要先转换成 ASCII 码再去比较。
如果使用自增的话,在插入方面的效率也会提高。
不使用自增,可能时不时会往 B+tree 的中间某一位置插入元素,当这个节点位置放满了的时候,节点就要进行分裂操作(效率低)再去维护,有可能树还要进行平衡,又是一个耗性能的操作。
都用自增就会永远都往后面插入元素,这样索引节点分裂的概率就会小很多。
参考资料
https://mp.weixin.qq.com/s/36Jaj79Y8BxFoDB3Bwe7mg










