568 - Just the Facts
Time limit: 3.000 seconds
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=100&page=show_problem&problem=509
The expression N!, read as ``N factorial," denotes the product of the first N positive integers, where N is nonnegative. So, for example,
 
| N | N! | 
| 0 | 1 | 
| 1 | 1 | 
| 2 | 2 | 
| 3 | 6 | 
| 4 | 24 | 
| 5 | 120 | 
| 10 | 3628800 | 
 
For this problem, you are to write a program that can compute the last non-zero digit of any factorial for (
). For example, if your program is asked to compute the last nonzero digit of 5!, your program should produce ``2" because 5! = 120, and 2 is the last nonzero digit of 120.
Input
 Input to the program is a series of nonnegative integers not exceeding 10000, each on its own line with no other letters, digits or spaces. For each integer 
N
, you should read the value and compute the last nonzero digit of 
N
!. 
Output
 For each integer input, the program should print exactly one line of output. Each line of output should contain the value 
N
, right-justified in columns 1 through 5 with leading blanks, not leading zeroes. Columns 6 - 9 must contain ``
 -> 
" (space hyphen greater space). Column 10 must contain the single last non-zero digit of 
N
!. 
Sample Input
12
26
125
3125
9999 
Sample Output
 
1 -> 1    2 -> 2
   26 -> 4
  125 -> 8
 3125 -> 2
 9999 -> 8 
方法1:打表。根据数据范围,计算时保留最后5位就行。
方法2:计算N!的素因子分解中5的幂的个数count,然后能被2整除的数要除以2直到达到count
先放上打表的算法:
/*0.016s*/
#include<cstdio>
int a[10001] = {1};/// 0!=1
int main()
{
	int i, x;
	for (i = 1; i <= 10000; i++)
	{
		a[i] = a[i - 1] * i;
		while (a[i] % 10 == 0) a[i] /= 10;
		a[i] %= 100000;///根据数据范围,保留最后5位就行~
	}
	while (~scanf("%d", &x))
		printf("%5d -> %d\n", x, a[x] % 10);
	return 0;
} 
然后是不打表的算法: 
/*0.016s*/
#include<cstdio>
int p[10000];
int main()
{
	int n;
	while (~scanf("%d", &n))
	{
		int i, sum = 1, count = 0, tem = 0;
		if (n == 0)
		{
			printf("    0 -> 1\n");
			continue;
		}
		for (i = 0; i < n; i++) p[i] = i + 1;
		for (i = 0; i < n; i++)
			while (true)
			{
				if (p[i] % 5 == 0)
				{
					p[i] /= 5;
					count++;
				}
				else break;
			}
		for (i = 0; i < n; i++)
		{
			while (true)
			{
				if (p[i] % 2 == 0)
				{
					p[i] /= 2;
					tem++;
				}
				if (p[i] % 2 || tem == count)
					break;
			}
			if (tem == count)
				break;
		}
		for (i = 0; i < n; i++)
		{
			sum *= p[i];
			sum %= 10;
		}
		printf("%5d -> %d\n", n, sum);
	}
	return 0;
} 










