- spark-shell 
- dos命令行下输入 
spark-shell - 引入依赖: 
spark-shell --jars /path/myjar1.jar,/path/myjar2.jar - 指定资源: 
spark-shell --master yarn-client --driver-memory 16g --num-executors 60 --executor-memory 20g --executor-cores 2 - 自动加载内容

 - 显示日志级别 
spark.sparkContext.setLogLevel("ERROR") 
 - dos命令行下输入 
 
- intellij配置 
  
- 修改pom文件添加依赖 
<properties> <maven.compiler.source>1.8</maven.compiler.source> <maven.compiler.target>1.8</maven.compiler.target> <encoding>UTF-8</encoding> <scala.version>2.11.8</scala.version> <spark.version>2.2.0</spark.version> <hadoop.version>2.7.1</hadoop.version> <scala.compat.version>2.11</scala.compat.version> </properties> <!--声明并引入公有的依赖--> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>${hadoop.version}</version> </dependency> </dependencies> 
 - 修改pom文件添加依赖 
 - 定义spark和sc 
  
- 定义spark 
val spark = SparkSession.builder().appName("Word Count").getOrCreate() - 定义sc 
sc = spark.sparkContext() 
 - 定义spark 
 










