0
点赞
收藏
分享

微信扫一扫

2014年第四届蓝桥杯省赛C/C++ B试题解析

棒锤_45f2 2022-01-08 阅读 68

1、啤酒和饮料

标题:啤酒和饮料

啤酒每罐2.3元,饮料每罐1.9元。小明买了若干啤酒和饮料,一共花了82.3元。
我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒。
注意:答案是一个整数。请通过浏览器提交答案。
不要书写任何多余的内容(例如:写了饮料的数量,添加说明文字等)。

#include<stdio.h>
main()
{
	int a,b;
	for(a=1;a<40;a++)
	for(b=a;b<50;b++)
	{
		if(a*23+b*19==823)
		printf("%d %d\n",a,b);
	}
	printf("%f",11*2.3+1.9*30);
	return 0;
 } 

2、切面条

标题:切面条

一根高筋拉面,中间切一刀,可以得到2根面条。
如果先对折1次,中间切一刀,可以得到3根面条。
如果连续对折2次,中间切一刀,可以得到5根面条。
那么,连续对折10次,中间切一刀,会得到多少面条呢?
答案是个整数,请通过浏览器提交答案。不要填写任何多余的内容。

#include<stdio.h>
main()
{
	int a[11]={2,3,5},i;
	for(i=1;i<10;i++)
	{
		a[i+1]=2*a[i]-1;
		printf("a[%d]=%d\n",i+1,a[i+1]);
	}
	return 0;
 } 

3、李白打酒

标题:李白打酒
话说大诗人李白,一生好饮。幸好他从不开车。
一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。
请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。
注意:通过浏览器提交答案。答案是个整数。不要书写任何多余的内容。


#include<stdio.h>

//	求出结果 

int f(int d,int a,int b)
{
	
	if( d<1 || a>5 || b>9 )
		return 0;
	
	if(d==1 && a==5 && b==9)
		return 1;
	
	return f(d-1,a,b+1)+f(d*2,a+1,b);
	
}

int main()
{
	int s;
	
	s=f(2,0,0);
	
	printf("%d\n",s);
	
	return 0;
}
 

4、史丰收速算

标题:史丰收速算

史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
速算的核心基础是:1位数乘以多位数的乘法。
其中,乘以7是最复杂的,就以它为例。
因为,1/7 是个循环小数:0.142857…,如果多位数超过 142857…,就要进1
同理,2/7, 3/7, … 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
下面的程序模拟了史丰收速算法中乘以7的运算过程。
乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
乘以 7 的进位规律是:
满 142857… 进1,
满 285714… 进2,
满 428571… 进3,
满 571428… 进4,
满 714285… 进5,
满 857142… 进6
请分析程序流程,填写划线部分缺少的代码。

//计算个位 
int ge_wei(int a)
{
	if(a % 2 == 0)
		return (a * 2) % 10;
	else
		return (a * 2 + 5) % 10;	
}

//计算进位 
int jin_wei(char* p)
{
	char* level[] = {
		"142857",
		"285714",
		"428571",
		"571428",
		"714285",
		"857142"
	};
	
	char buf[7];
	buf[6] = '\0';
	strncpy(buf,p,6);
	
	int i;
	for(i=5; i>=0; i--){
		int r = strcmp(level[i], buf);
		if(r<0) return i+1;
		while(r==0){
			p += 6;
			strncpy(buf,p,6);
			r = strcmp(level[i], buf);
			if(r<0) return i+1;
			______________________________;  //填空
		}
	}
	
	return 0;
}

//多位数乘以7
void f(char* s) 
{
	int head = jin_wei(s);
	if(head > 0) printf("%d", head);
	
	char* p = s;
	while(*p){
		int a = (*p-'0');
		int x = (ge_wei(a) + jin_wei(p+1)) % 10;
		printf("%d",x);
		p++;
	}
	
	printf("\n");
}

int main()
{
	f("428571428571");
	f("34553834937543");		
	return 0;
}

注意:通过浏览器提交答案。只填写缺少的内容,不要填写任何多余的内容(例如:说明性文字)

#include<stdio.h>
#include<string.h>
//计算个位 
int ge_wei(int a)
{
	if(a % 2 == 0)
		return (a * 2) % 10;
	else
		return (a * 2 + 5) % 10;	
}

//计算进位 
int jin_wei(char* p)
{
	char* level[] = {
		"142857",
		"285714",
		"428571",
		"571428",
		"714285",
		"857142"
	};
	
	char buf[7];
	buf[6] = '\0';
	strncpy(buf,p,6);
	
	int i;
	for(i=5; i>=0; i--){
		int r = strcmp(level[i], buf);
		if(r<0) return i+1;
		while(r==0){
			p += 6;
			strncpy(buf,p,6);
			r = strcmp(level[i], buf);
			if(r<0) return i+1;
			return i;  //填空
		}
	}
	
	return 0;
}

//多位数乘以7
void f(char* s) 
{
	int head = jin_wei(s);
	if(head > 0) printf("%d", head);
	
	char* p = s;
	while(*p){
		int a = (*p-'0');
		int x = (ge_wei(a) + jin_wei(p+1)) % 10;
		printf("%d",x);
		p++;
	}
	
	printf("\n");
}

int main()
{
	f("428571428571");
	f("34553834937543");
	f("428571");
	printf("%d\n",428571*7);
			
	return 0;
}

5、打印图形

标题:打印图形

小明在X星球的城堡中发现了如下图形和文字:
1
rank=3
*

rank=5
*
* *
* *
* * * *
* *
* * * *
* * * *
* * * * * * * *
* *
* * * *
* * * *
* * * * * * * *

ran=6
*
* *
* *
* * * *
* *
* * * *
* * * *
* * * * * * * *
* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *

小明开动脑筋,编写了如下的程序,实现该图形的打印。

#define N 70

void f(char a[][N], int rank, int row, int col)
{
	if(rank==1){
		a[row][col] = '*';
		return;
	}
	
	int w = 1;
	int i;
	for(i=0; i<rank-1; i++) w *= 2;
	
	____________________________________________;
	f(a, rank-1, row+w/2, col);
	f(a, rank-1, row+w/2, col+w);
}

int main()
{
	char a[N][N];
	int i,j;
	for(i=0;i<N;i++)
	for(j=0;j<N;j++) a[i][j] = ' ';
	
	f(a,6,0,0);
	
	for(i=0; i<N; i++){
		for(j=0; j<N; j++) printf("%c",a[i][j]);
		printf("\n");
	}
	
	return 0;
}

请仔细分析程序逻辑,填写缺失代码部分。
通过浏览器提交答案。注意不要填写题目中已有的代码。也不要写任何多余内容(比如说明性的文字)

#include<stdio.h>
#define N 70

void f(char a[][N], int rank, int row, int col)
{
	if(rank==1){
		a[row][col] = '*';
		return;
	}
	
	int w = 1;
	int i;
	for(i=0; i<rank-1; i++) w *= 2;
	
	f(a, rank-1, row, col+w/2);//填空 
	f(a, rank-1, row+w/2, col);
	f(a, rank-1, row+w/2, col+w);
}

int main()
{
	char a[N][N];
	int i,j;
	for(i=0;i<N;i++)
	for(j=0;j<N;j++) a[i][j] = ' ';
	
	f(a,6,0,0);
	
	for(i=0; i<N; i++){
		for(j=0; j<N; j++) printf("%c",a[i][j]);
		printf("\n");
	}
	
	return 0;
}

6、奇怪的分式

标题:奇怪的分式

上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:
1/4 乘以 8/5
小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)
老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼!
对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢?
请写出所有不同算式的个数(包括题中举例的)。
显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。
但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!

注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。

#include<stdio.h>
int gcd(int i,int j)
{
	return (j==0)?i:gcd(j,i%j);
}
main()
{
	//   a/b * c/d == ac/bd
	
	int a,b,c,d,fz=0,fm=0,fz2=0,fm2=0,ss=0;
	for(a=1;a<10;a++)
	for(b=1;b<10;b++)
	for(c=1;c<10;c++)
	for(d=1;d<10;d++)
	{
		if(a!=b&&c!=d)
		{
			fz=a*c;
			fm=b*d;
			ss=gcd(fz,fm);
			//printf("fz=%d fm=%d\n",fz,fm);
			//printf("gcd=%d\n",gcd(fz,fm));
			fz/=ss;
			fm/=ss;
			
			fz2=a*10+c;
			fm2=b*10+d;
			ss=gcd(fz2,fm2);
			fz2/=ss;
			fm2/=ss;
			
			if(fz==fz2&&fm==fm2)
				printf("%d %d %d %d\n",a,b,c,d);
			//(a/b)*(c/d)==(a*10+c)/(b*10+d)
		}
	}
	return 0;
 } 

7、六角填数

标题:六角填数
在这里插入图片描述

如图【1.png】所示六角形中,填入1~12的数字。
使得每条直线上的数字之和都相同。
图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少?

请通过浏览器提交答案,不要填写多余的内容。

#include<stdio.h>

int bk[13]={0};
int a[13]={0};

int cnt=0;

void f(int sp)
{
	int i;
	
	if(sp==10)
	{
		if( check() )
		{
			cnt++;
			for(i=1;i<10;i++)
				printf("%d ",a[i]);
			
			printf("\n");
		}
	}
	else
	{
		for(i=1;i<13;i++)
		if( bk[i]==0 )
		{
			bk[i]=1;
			a[sp]=i;
			
			f(sp+1);
			
			a[sp]=0;
			bk[i]=0;
		}
	}
}


int check()
{
	int z1,z2,z3,z4,z5,z6;
	
	z1 = 8+ a[1] + a[2] + a[3];
	
	z2 = 11 + a[4] + a[7];
	if(z1!=z2)return 0;
	
	z3 = 3 + a[3] + a[5] + a[8];
	if(z1!=z3)return 0;
	
	z4 = 1 + a[1] + a[4] + a[6];
	if(z1!=z4)return 0;
	
	z5 = 1 + a[2] + a[5] + a[9];
	if(z1!=z5)return 0;
	
	z6 = a[6] + a[7] + a[8] + a[9];
	if(z1!=z6)return 0;
	
	return 1;
}


int main()
{
	bk[0]=1;
	bk[1]=1;
	bk[3]=1;
	bk[8]=1;
	
	f(1);
	printf("%d\n",cnt);
	
	return 0;
}

8、蚂蚁感冒

标题:蚂蚁感冒

长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。
每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。
当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。
这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。
请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。

【数据格式】
第一行输入一个整数n (1 < n < 50), 表示蚂蚁的总数。
接着的一行是n个用空格分开的整数 Xi (-100 < Xi < 100), Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数据代表的蚂蚁感冒了。
要求输出1个整数,表示最后感冒蚂蚁的数目。
例如,输入:
3
5 -2 8
程序应输出:
1
再例如,输入:
5
-10 8 -20 12 25
程序应输出:
3
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。

#include<stdio.h>
main()
{
	int n,i,a[20],j,flag,fl,left,right;
	scanf("%d",&n);
	
	for(i=0;i<n;i++)
		scanf("%d",&a[i]);
	
	flag=a[0];
	
	for(j=n-1;j>0;j--)
	for(i=0;i<n-1;i++)
	{
		if(abs(a[i])>abs(a[i+1]))
		{
			a[i]^=a[i+1];
			a[i+1]^=a[i];
			a[i]^=a[i+1];
		}
	 } 
	
	for(i=0;i<n;i++)
	{
		if(a[i]==flag)
		{
			fl=i;
		}
			
	}
	
	if(flag>0)	//	cold  rr
	{
		//  1
		//  r + l +1 
		left=0;
		right=0;
		for(i=fl+1;i<n;i++)
		{
			if(a[i]<0)
				left++;
		}
		for(i=0;i<fl;i++)
		{
			if(a[i]>0)
				right++;
		}
		if(left==0)
			printf("1\n");
		else
			printf("%d\n",left+right+1);
		
	}
	else		//	cold  ll
	{
		left=0;
		right=0;
		for(i=fl+1;i<n;i++)
		{
			if(a[i]<0)
				left++;
		}
		for(i=0;i<fl;i++)
		{
			if(a[i]>0)
				right++;
		}
		if(right==0)
			printf("1\n");
		else
			printf("%d\n",left+right+1);
	}
	
	return 0;
}

9、地宫取宝

标题:地宫取宝

X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。

【数据格式】
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
例如,输入:
2 2 2
1 2
2 1
程序应该输出:
2
再例如,输入:
2 3 2
1 2 3
2 1 5
程序应该输出:
14
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。

#include <stdio.h>
#define MAX 1000000007
#define M 51
int values[M][M]={0};
int n=0,m=0,k=0;
int count=0;
void search(int own,int max,int x,int y);
int main(void)
{
	int i=0,j=0;
	scanf("%d %d %d",&n,&m,&k);
	for(i=0;i<n;i++)
	{
		for(j=0;j<m;j++)
		{
			scanf("%d",*(values+i)+j);
		}
	}
	search(0,0,0,0);
	printf("%d",count);
	return 0;
}
 
void search(int own,int max,int x,int y) //手里拥有的数量和最大值和坐标 
{
	if(x>=n||y>=m||own>k) return;
	if(x==n-1&&y==m-1&&(own==k||own==k-1&&values[x][y]>max))
	{
		count++;
		count = count%MAX;
		return;
	}
	if(values[x][y]>max)
	{
		search(own+1,values[x][y],x+1,y);
		search(own+1,values[x][y],x,y+1);
	}
	search(own,max,x+1,y);
	search(own,max,x,y+1);
}

10、小朋友排队

标题:小朋友排队

n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。
每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。
如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。
请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。
如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。

【数据格式】
输入的第一行包含一个整数n,表示小朋友的个数。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
例如,输入:
3
3 2 1
程序应该输出:
9
【样例说明】
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
【数据规模与约定】
对于10%的数据, 1<=n<=10;
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;
对于100%的数据,1<=n<=100000,0<=Hi<=1000000。
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。


#include <stdio.h>
#include<string.h>
#define N 1000003
long long sum[N],c[N],a[N],b[N],c2[N];
//“当一个数与其取负后的值相与, 如果这个数是偶数, 则结果是能整除这个偶数的最大的2的幂(即: m = n & -n , 则 n % m = 0, 且 m = 2 ^ k), 如果这个数是奇数, 则结果必为1”
//用途: 一般用来获取某个二进制数的LowBit
long long int zh(long long int k)
{
  return k&(-k);
}

int main()
{  
  long long int j, i,m,ans=0,max=0,t=0; 
  memset(c,0,sizeof(c));  
  memset(b,0,sizeof(b)); 
  memset(c2,0,sizeof(c2));
  scanf("%lld",&m);  
  for(i=0;i<m;i++)
  {
    scanf("%lld",&a[i]); 
    if(a[i]>max)max=a[i];
  }  
  for(i=0;i<m;i++)
  {    
    j=a[i]+1;    
    while(j<=max+1)c[j]+=1,j+=zh(j);
    j=a[i]+1;    
    while(j>0)b[i]+=c[j],j-=zh(j);//b[i]=在这之前进入的小于等于 这个数 包含本数 
    b[i]=i-b[i]+1;//b[i]=i-(b[i]-1)
  }
  for(i=m-1;i>=0;i--)
  {   
    j=a[i]+1;   while(j<=max+2)c2[j]+=1,j+=zh(j);
    j=a[i];     while(j>0)b[i]+=c2[j],j-=zh(j);     
    if(b[i]>t)t=b[i];
  }
  sum[0]=0; 
  for(i=1;i<=t;i++)
    sum[i]=sum[i-1]+i;   
  for(i=0;i<m;i++)
    ans+=sum[b[i]];
  printf("%lld\n",ans);
  return 0;
}

举报

相关推荐

0 条评论