0
点赞
收藏
分享

微信扫一扫

flink 1.10.1 + redis sink写入处理结果到redis

独西楼Q 2022-02-07 阅读 88
redisflink

本文的基础环境可以参考flink 1.10.1 java版本wordcount演示 (nc + socket),在此基础上增加输出结果到redis。

1. 添加依赖

<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>flink-connector-redis_2.11</artifactId>
    <version>1.0</version>
</dependency>

2. 编写测试代码

package com.demo.redis;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import org.apache.flink.util.Collector;

/**
 * flink结果写入redis
 */
public class FlinkRedisDemo {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        DataStream<String> dataStream = env.socketTextStream("192.168.0.181",9000);

        SingleOutputStreamOperator<String> flatMap = dataStream.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                String[] strings = value.split(" ");
                for (String s : strings) {
                    out.collect(s);
                }
            }
        });
        SingleOutputStreamOperator<Tuple2<String, Integer>> map = flatMap.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Integer>> sum = map.keyBy("f0").sum(1);


        FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
                .setHost("localhost")
                .setPort(6379)
                .build();

        RedisSink<Tuple2<String, Integer>> redisSink = new RedisSink<Tuple2<String, Integer>>(config,
                new MyRedisMapper());

        sum.addSink(redisSink);

        sum.print();

        env.execute();

    }

    // 自定义redis操作命令
    public static class MyRedisMapper implements RedisMapper<Tuple2<String, Integer>>
    {
        @Override
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.HSET, "statis-test");
        }

        @Override
        public String getKeyFromData(Tuple2<String, Integer> data) {
            return data.f0;
        }

        @Override
        public String getValueFromData(Tuple2<String, Integer> data) {
            return data.f1.toString();
        }
    }
}

sum.addSink(redisSink)是将sum流结果输出到redis。

其中MyRedisMapper定义了redis写入的方式。

3. 查看输出结果

nc输入信息:

控制台输出:

redis查看写入信息:

举报

相关推荐

0 条评论