0
点赞
收藏
分享

微信扫一扫

排序算法实现及比较

英乐 2022-03-18 阅读 52

排序算法比较

在这里插入图片描述

一、数组形式排序

1、快速排序

示例:

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high){
        int i,j,temp,t;
        // 当 low>high 时一次循环就结束
        if(low>high){
            return;
        }
        i=low;
        j=high;
        // temp 就是基准位
        temp = arr[low];
 
        while (i<j) {
            // 先看右边,依次往左遍历,直到找到小于 temp 的值或者 i=j 时停止遍历
            while (temp<=arr[j]&&i<j) {
                j--;
            }
            // 再看左边,依次往右遍历,直到找到大于 temp 的值或者 i=j 时停止遍历
            while (temp>=arr[i]&&i<j) {
                i++;
            }
            // 如果满足条件则交换
            if (i<j) {
                t = arr[j];
                arr[j] = arr[i];
                arr[i] = t;
            }
 
        }
        // 最后将基准为与 i 和 j 相等位置的数字交换
         arr[low] = arr[i];
         arr[i] = temp;
        // 递归调用左半数组
        quickSort(arr, low, j-1);
        // 递归调用右半数组
        quickSort(arr, j+1, high);
    }
 
 
    public static void main(String[] args){
        int[] arr = {10,7,2,4,7,62,3,4,2,1,8,9,19};
        quickSort(arr, 0, arr.length-1);
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

2、堆排序(大根堆)

堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将 array[0,…,n-1] 看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(最小)的元素。

若 array[0,…,n-1] 表示一颗完全二叉树的顺序存储模式,则双亲节点指针和孩子结点指针之间的内在关系如下:

堆的定义:

建立大根堆:

堆排序(大根堆):

堆排序算法的性能分析:

建立大根堆

	//构建大根堆:将array看成完全二叉树的顺序存储结构
    private int[] buildMaxHeap(int[] array){
        //从最后一个节点array.length-1的父节点(array.length-1-1)/2开始,直到根节点0,反复调整堆
        for(int i=(array.length-2)/2;i>=0;i--){
            adjustDownToUp(array, i,array.length);
        }
        return array;
    }

    //将元素array[k]自下往上逐步调整树形结构
    private void adjustDownToUp(int[] array,int k,int length){
        int temp = array[k];
        for(int i=2*k+1; i<length-1; i=2*i+1){    // i 初始化为当前节点的左孩子,每次沿节点较大的子节点向下调整
            if(i<length && array[i]<array[i+1]){  // 取节点较大的子节点的下标
                i++;   // 如果节点的右孩子>左孩子,则取右孩子节点的下标
            }
            if(temp>=array[i]){  //根节点 >=左右子女中关键字较大者,调整结束
                break;
            }else{   //根节点 <左右子女中关键字较大者
                array[k] = array[i];  //将左右子结点中较大值array[i]调整到双亲节点上
                k = i; //【关键】修改k值,以便继续向下调整
            }
        }
        array[k] = temp;  //被调整的结点的值放人最终位置
    }

堆排序

	//堆排序
    public int[] heapSort(int[] array){
        array = buildMaxHeap(array); //初始建堆,array[0]为第一趟值最大的元素
        for(int i=array.length-1;i>1;i--){
            int temp = array[0];  //将堆顶元素和堆低元素交换,即得到当前最大元素正确的排序位置
            array[0] = array[i];
            array[i] = temp;
            adjustDownToUp(array, 0,i);  //整理,将剩余的元素整理成堆
        }
        return array;
    }

3、归并排序

归并排序(Merge)是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

(1)自顶向下

代码

public class Main {
 
	public static void main(String[] args) {
		int[] arr = {11,44,23,67,88,65,34,48,9,12};
		int[] tmp = new int[arr.length];    //新建一个临时数组存放
		mergeSort(arr,0,arr.length-1,tmp);
		for(int i=0;i<arr.length;i++){
			System.out.print(arr[i]+" ");
		}
	}
	
	public static void merge(int[] arr,int low,int mid,int high,int[] tmp){
		
		int i = 0, j = low, k = mid+1;  //左边序列和右边序列起始索引
		while(j <= mid && k <= high){
			if(arr[j] < arr[k]){
				tmp[i++] = arr[j++];
			}else{
				tmp[i++] = arr[k++];
			}
		}
		//若左边序列还有剩余,则将其全部拷贝进tmp[]中
		while(j <= mid){    
			tmp[i++] = arr[j++];
		}
		
		while(k <= high){
			tmp[i++] = arr[k++];
		}
		
		for(int t=0;t<i;t++){
			arr[low+t] = tmp[t];
		}
	}
 
	public static void mergeSort(int[] arr,int low,int high,int[] tmp){
		if(low<high){
			int mid = (low+high)/2;
			mergeSort(arr,low,mid,tmp); //对左边序列进行归并排序
			mergeSort(arr,mid+1,high,tmp);  //对右边序列进行归并排序
			merge(arr,low,mid,high,tmp);    //合并两个有序序列
		}
	}
	
}

(2)自底向上

二、链表形式的排序

三、常用的排序 API 与数据结构

1、Arrays.sort()

(1)API
在这里插入图片描述
(2)源码

public static void sort(int[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

(3)执行流程
在这里插入图片描述

2)为什么要判断结构

2、Collections

3、优先级队列

队列是一种先进先出(FIFO)的数据结构,但是有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列。Java 集合框架中提供了 PriorityQueue 和 PriorityBlockingQueue 两种类型的优先级队列,PriorityQueue 是线程不安全的,PriorityBlockingQueue 是线程安全的,这里主要使用 PriorityQueue。PriorityQueue 的底层是堆,堆的底层是数组

(1)PriorityQueue 使用注意点

(2)PriorityQueue 的扩容方式

(3)构造函数
在这里插入图片描述

(4)插入/删除/获取优先级最高的元素
在这里插入图片描述

4、TreeSet

5、TreeMap

举报

相关推荐

0 条评论