如果
W
W
W 是 Wishart 分布的随机矩阵
W
m
(
n
,
λ
I
m
)
W_m(n,\lambda I_m)
Wm(n,λIm),则
E
[
d
e
t
W
k
]
=
∏
l
=
0
m
−
1
Γ
(
n
−
l
+
k
)
Γ
(
n
−
l
)
E\left [ \mathrm{det} W^k \right ]=\prod_{l=0}^{m-1}\frac{\Gamma(n-l+k)}{\Gamma(n-l)}
E[detWk]=l=0∏m−1Γ(n−l)Γ(n−l+k)
证明: Wishart 分布随机矩阵的特征值PDF为
f
(
l
)
=
π
m
(
m
−
1
)
λ
m
n
Γ
~
m
(
n
)
Γ
~
m
(
m
)
exp
(
−
1
λ
∑
i
=
1
m
l
i
)
∏
i
l
i
(
n
−
m
)
∏
i
<
j
(
l
i
−
l
j
)
2
f(l) = \frac{\pi^{m\left ( m-1 \right )}}{\lambda ^{mn}\tilde{\Gamma} _m \left( {n} \right)\tilde{\Gamma} _m \left( {m} \right)} \exp\left(-\frac{1}{\lambda}\sum _{i=1}^{m} l_i \right) \prod\limits_{i} {l_i^{\left ( n-m\right )}} \prod\limits_{i < j} {\left( {l_i - l_j } \right)^2}
f(l)=λmnΓ~m(n)Γ~m(m)πm(m−1)exp(−λ1i=1∑mli)i∏li(n−m)i<j∏(li−lj)2
因此
E
[
d
e
t
W
k
]
=
∫
∏
i
l
i
k
f
(
l
)
=
Γ
~
m
(
n
+
k
)
Γ
~
m
(
n
)
∫
π
m
(
m
−
1
)
λ
m
n
Γ
~
m
(
n
+
k
)
Γ
~
m
(
m
)
⋅
exp
(
−
1
λ
∑
i
=
1
m
l
i
)
∏
i
l
i
(
n
+
k
−
m
)
∏
i
<
j
(
l
i
−
l
j
)
2
=
Γ
~
m
(
n
+
k
)
Γ
~
m
(
n
)
=
∏
l
=
0
m
−
1
Γ
(
n
−
l
+
k
)
Γ
(
n
−
l
)
\begin{aligned} E\left [ \mathrm{det}W^k \right ]&=\int \prod_i l_i^k f(l)\\ &= \frac{\tilde{\Gamma} _m \left( {n+k} \right)}{\tilde{\Gamma} _m \left( {n} \right)}\int \frac{\pi^{m\left ( m-1 \right )}}{\lambda ^{mn}\tilde{\Gamma} _m \left( {n+k} \right)\tilde{\Gamma} _m \left( {m} \right)} \\&\hspace{6em}\cdot \exp\left(-\frac{1}{\lambda}\sum _{i=1}^{m} l_i \right) \prod\limits_{i} {l_i^{\left ( n+k-m\right )}} \prod\limits_{i < j} {\left( {l_i - l_j } \right)^2}\\ &=\frac{\tilde{\Gamma} _m \left( {n+k} \right)}{\tilde{\Gamma} _m \left( {n} \right)}=\prod_{l=0}^{m-1}\frac{\Gamma(n-l+k)}{\Gamma(n-l)}\end{aligned}
E[detWk]=∫i∏likf(l)=Γ~m(n)Γ~m(n+k)∫λmnΓ~m(n+k)Γ~m(m)πm(m−1)⋅exp(−λ1i=1∑mli)i∏li(n+k−m)i<j∏(li−lj)2=Γ~m(n)Γ~m(n+k)=l=0∏m−1Γ(n−l)Γ(n−l+k)
◊
◊
\Diamond\Diamond
◊◊
下面求
log
e
d
e
t
W
\log_e \mathrm{det} W
logedetW 的期望:
E
[
e
ζ
log
e
d
e
t
W
]
=
E
[
d
e
t
W
ζ
]
=
∏
l
=
0
m
−
1
Γ
(
n
−
l
+
ζ
)
Γ
(
n
−
l
)
E\left [e^{\zeta \log_e \mathrm{det} W} \right ]=E\left [\mathrm{det} W^\zeta \right ]=\prod_{l=0}^{m-1}\frac {\Gamma(n-l+\zeta)}{\Gamma (n-l)}
E[eζlogedetW]=E[detWζ]=l=0∏m−1Γ(n−l)Γ(n−l+ζ)
所以
E
[
log
e
d
e
t
W
]
=
d
d
ζ
E
[
e
ζ
log
e
d
e
t
W
]
ζ
=
0
=
∑
l
=
0
m
−
1
Γ
′
(
n
−
l
)
Γ
(
n
−
l
)
=
∑
l
=
0
m
−
1
ψ
(
n
−
l
)
\begin{aligned} E\left [\log_e \mathrm{det} W \right ]&=\frac{d}{d\zeta}E\left [e^{\zeta \log_e \mathrm{det} W} \right ]_{\zeta=0}\\&=\sum_{l=0}^{m-1}\frac{\Gamma'(n-l)}{\Gamma (n-l)}\\&=\sum_{l=0}^{m-1}\psi (n-l) \end{aligned}
E[logedetW]=dζdE[eζlogedetW]ζ=0=l=0∑m−1Γ(n−l)Γ′(n−l)=l=0∑m−1ψ(n−l)
同理可以得到
log
e
d
e
t
W
\log_e \mathrm{det} W
logedetW 的方差:
V
a
r
[
log
e
d
e
t
W
]
=
d
2
d
ζ
2
E
[
e
ζ
log
e
d
e
t
W
]
ζ
=
0
−
E
2
[
log
e
d
e
t
W
]
=
∑
l
=
0
m
−
1
ψ
˙
(
n
−
l
)
\begin{aligned} \mathrm{Var}\left [\log_e \mathrm{det} W \right ]&=\frac{d^2}{d\zeta^2}E\left [e^{\zeta \log_e \mathrm{det} W} \right ]_{\zeta=0}-\mathrm{E}^2\left [\log_e \mathrm{det} W \right ]\\&=\sum_{l=0}^{m-1}\dot{\psi }(n-l) \end{aligned}
Var[logedetW]=dζ2d2E[eζlogedetW]ζ=0−E2[logedetW]=l=0∑m−1ψ˙(n−l)
其中
ψ
(
x
)
=
d
d
x
ln
Γ
(
x
)
\psi (x)={d \over dx}\ln\Gamma(x)
ψ(x)=dxdlnΓ(x) 称为 Euler’s digamma function
ψ
(
x
+
1
)
=
ψ
(
x
)
+
1
x
ψ
(
m
)
=
ψ
(
m
−
l
)
+
1
m
−
1
=
ψ
(
1
)
+
∑
l
=
1
m
−
1
1
l
ψ
(
1
)
=
−
γ
=
−
lim
n
→
+
∞
[
(
1
+
1
/
2
+
1
/
3
+
⋯
+
1
/
n
)
−
ln
n
]
ψ
˙
(
m
+
1
)
=
ψ
˙
(
m
)
−
1
m
2
\psi (x+1)=\psi (x)+\frac{1}{x}\\ \psi (m)=\psi (m-l)+\frac{1}{m-1}=\psi (1)+\sum_{l=1}^{m-1}\frac{1}{l}\\ \psi (1)=-\gamma=-\lim\limits_{n\to +\infty}[(1+1/2+1/3+\cdots +1/n)-\ln n]\\ \dot{\psi} (m+1)=\dot\psi (m)-\frac{1}{m^2}
ψ(x+1)=ψ(x)+x1ψ(m)=ψ(m−l)+m−11=ψ(1)+l=1∑m−1l1ψ(1)=−γ=−n→+∞lim[(1+1/2+1/3+⋯+1/n)−lnn]ψ˙(m+1)=ψ˙(m)−m21
γ
=
lim
n
→
+
∞
H
n
−
ln
n
\gamma=\lim\limits_{n\to +\infty}H_n-\ln n
γ=n→+∞limHn−lnn 是欧拉常数,
H
n
H_n
Hn 是调和级数。
References:
Random matrix theory and wireless communications (Book Tulino) (Theorem 2.11).
D. Jonsson, “Some limit theorems for the eigenvalues of a sample covariance matrix,” J. Multivariate Analysis, vol. 12, pp. 1–38, 1982.
R. J. Muirhead, Aspects of multivariate statistical theory. New York, Wiley, 1982.