0
点赞
收藏
分享

微信扫一扫

2.Linux的例行性工 作(计划任务)

1.JAVA

1.饼图

前端使用vue,后端使用SpringBoot

<template>
  <div>
    <div class="card" style="padding: 15px">
      数据可视化分析:图书类型销量
    </div>

    <div style="display: flex; margin: 10px 0">
      <div style="display: flex; margin: 10px 0">
        <div style="width: 1200px;height: 600px;" class="card" id="goodsPie"></div>
      </div>
    </div>

  </div>
</template>

<script>
import * as echarts from "echarts";

let pieGoodsOptions = {
  title: {
    text: '', // 主标题
    subtext: '', // 副标题
    left: 'center'
  },
  tooltip: {
    trigger: 'item',
    formatter: '{a} <br/>{b} : {c} ({d}%)'
  },
  legend: {
    top: '8%',
    type: 'scroll',
    orient: 'vertical',
    left: 'left',
    pageIconColor: 'red', // 激活的分页按钮颜色
    pageIconInactiveColor: 'yellow', // 没激活的分页按钮颜色
  },
  series: [
    {
      name: '', // 鼠标移上去显示内容
      type: 'pie',
      radius: '50%',
      center: ['50%', '60%'],
      data: [
        {value: 0, name: ''}, // 示例数据:name表示维度,value表示对应的值
      ]
    }
  ]
}

export default {
  name: "Visualization",
  data() {
    return {
      
    }
  },
  created() {
    this.loadGoodsPie();
  },
  methods: {
    loadGoodsPie(){
      this.$request.get('/goods/getPie').then(res => {
        if (res.code === '200') {
          let chartDom = document.getElementById('goodsPie');
          let myChart = echarts.init(chartDom);
          pieGoodsOptions.title.text = res.data.text
          pieGoodsOptions.title.subtext = res.data.subText
          pieGoodsOptions.series[0].name = res.data.name
          pieGoodsOptions.series[0].data = res.data.data
          myChart.setOption(pieGoodsOptions);
        } else {
          this.$message.error(res.msg)
        }
      })
    },
  }
}
</script>
/**
 * 渲染图书类型销量饼状图
 */
@GetMapping("/getPie")
public Result getPie() {
    Map<String, Object> resultMap = new HashMap<>();
    List<Map<String, Object>> list = new ArrayList<>();

    // 获得商品分类名称为key,该分类销量为value的map
    List<Goods> goodsList = goodsService.selectAll(new Goods());
    Map<String, Integer> collect = goodsList.stream().filter(x -> ObjectUtil.isNotEmpty(x.getTypeId()))
            .collect(Collectors.groupingBy(Goods::getTypeName, Collectors.reducing(0, Goods::getCount, Integer::sum)));

    for (String key : collect.keySet()) {
        Map<String, Object> map = new HashMap<>();
        map.put("name", key);
        map.put("value", collect.get(key));
        list.add(map);
    }

    resultMap.put("text", "图书类型销售量统计饼图");
    resultMap.put("subText", "统计维度:图书类型");
    resultMap.put("name", "占比数据");
    resultMap.put("data", list);

    return Result.success(resultMap);
}

1.柱状图

前端使用vue,后端使用SpringBoot

<template>
  <div>
    <div class="card" style="padding: 15px">
      数据可视化分析:店铺销量
    </div>

    <div style="display: flex; margin: 10px 0">

      <!-- 后台主页左上部分:公告 -->
      <div style="display: flex; margin: 10px 0">
        <div style="width: 600px;height: 600px;" class="card" id="businessBar"></div>
      </div>

    </div>

  </div>
</template>

<script>
import * as echarts from "echarts";

let barBusinessOptions = {
  title: {
    text: '', // 主标题
    subtext: '', // 副标题
    left: 'center'
  },
  xAxis: {
    axisLabel:{
      interval: 0,
      //rotate:30,
      formatter: function (name) {
        return (name.length > 8 ? (name.slice(0,8)+"...") : name );
      },
    },
    type: 'category',
    data: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] // 示例数据:统计的维度(横坐标)
  },
  yAxis: {
    type: 'value'
  },
  tooltip: {
    trigger: 'item'
  },
  series: [
    {
      data: [120, 200, 150, 80, 70, 110, 130], // 示例数据:横坐标维度对应的值(纵坐标)
      type: 'bar',
      itemStyle: {
        normal: {
          color:function(){return "#"+Math.floor(Math.random()*(256*256*256-1)).toString(16);}
        },
      },
    }
  ]
}

export default {
  name: "Visualization2",
  data() {
    return {
      
    }
  },
  created() {
    this.loadBusinessBar();
  },
  methods: {
    loadBusinessBar(){
      this.$request.get('/goods/getBar').then(res => {
        if (res.code === '200') {
          let chartDom = document.getElementById('businessBar');
          let myChart = echarts.init(chartDom);
          barBusinessOptions.title.text = res.data.text
          barBusinessOptions.title.subtext = res.data.subText
          barBusinessOptions.xAxis.data = res.data.xAxis
          barBusinessOptions.series[0].data = res.data.yAxis
          myChart.setOption(barBusinessOptions);
        } else {
          this.$message.error(res.msg)
        }
      })
    },
  }
}
</script>
/**
 * 渲染店铺销量柱状图
 */
@GetMapping("/getBar")
public Result getBar() {
    Map<String, Object> resultMap = new HashMap<>(); // 存取最后返回的数据
    Map<String, Object> res = new HashMap<>(); // 暂存销量前5的数据
    List<String> xList = new ArrayList<>(); // 店铺名称
    List<Integer> yList = new ArrayList<>(); // 店铺总销量

    // 获得店铺名称为key,该店铺全部销量求和为value的map
    List<Goods> goodsList = goodsService.selectAll(new Goods());
    Map<String, Integer> collect = goodsList.stream().filter(x -> ObjectUtil.isNotEmpty(x.getBusinessId()))
            .collect(Collectors.groupingBy(Goods::getBusinessName, Collectors.reducing(0, Goods::getCount, Integer::sum)));

    collect.entrySet()
            .stream()
            // 排序
            .sorted((p1, p2) -> p2.getValue().compareTo(p1.getValue()))
            // 截取前limitSize个
            .limit(5)
            .collect(Collectors.toList()).forEach(ele -> res.put(ele.getKey(), ele.getValue()));

    for (String key : res.keySet()) {
        xList.add(key);
        yList.add((Integer) res.get(key));
    }

    resultMap.put("text", "店铺销售量前五统计柱状图");
    resultMap.put("subText", "统计维度:店铺名称");
    resultMap.put("xAxis", xList);
    resultMap.put("yAxis", yList);

    return Result.success(resultMap);
}

2.Python 

1.折线图

import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts,LabelOpts

# 处理数据
f_usa = open("D:/美国.txt","r",encoding="UTF-8")
usa_data = f_usa.read() # 美国的全部内容
f_jp = open("D:/日本.txt","r",encoding="UTF-8")
jp_data = f_jp.read() # 日本的全部内容
f_in = open("D:/印度.txt","r",encoding="UTF-8")
in_data = f_in.read() # 印度的全部内容

# 去掉不符合JSON规范的开头
usa_data = usa_data.replace("jsonp_1629344292311_69436(","")
jp_data = jp_data.replace("jsonp_1629350871167_29498(","")
in_data = in_data.replace("jsonp_1629350745930_63180(","")

# 去掉不符合JSON规范的结尾
usa_data = usa_data[0:-2:1] # 最后两个字符:); 不要
jp_data = jp_data[0:-2:1] # 最后两个字符:); 不要
in_data = in_data[0:-2:1] # 最后两个字符:); 不要

# JSON转为python字典
usa_dict = json.loads(usa_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)
# print(type(usa_dict))
# print(usa_dict)

# 获取trend
usa_trend_data = usa_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']
# print(trend_data)

#取日期数据,用于x轴,只去2020一年(到313结束)
usa_x_data = usa_trend_data["updateDate"][0:314]
jp_x_data = jp_trend_data["updateDate"][0:314]
in_x_data = in_trend_data["updateDate"][0:314]
# print(x_data)

#取确诊数据,用于y轴
usa_y_data = usa_trend_data['list'][0]['data'][0:314]
jp_y_data = jp_trend_data['list'][0]['data'][0:314]
in_y_data = in_trend_data['list'][0]['data'][0:314]
# print(y_data)

# 生成图表对象
line = Line()

# 添加x轴,日期公用添加一个即可
line.add_xaxis(usa_x_data)

# 添加y轴
line.add_yaxis("美国确诊人数", usa_y_data, label_opts=LabelOpts(is_show=False)) # 设置折线上不展示数字
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))

# 设置全局配置项,选填
line.set_global_opts(
    title_opts=TitleOpts(title="2020年美日印确诊人数折线图",pos_left="center",pos_bottom="1%"), # 标题
    legend_opts=LegendOpts(is_show=True), # 图例
    toolbox_opts=ToolboxOpts(is_show=True), # 工具箱
    visualmap_opts=VisualMapOpts(is_show=True), # 视觉映射
)

# 生成图表
line.render()

# 关闭文件对象
f_usa.close()
f_jp.close()
f_in.close()

2.全国地图

import json
from pyecharts.charts import Map
from pyecharts.options import *

f = open("D:/疫情.txt","r",encoding="UTF-8")
data = f.read() # 全部数据
f.close()

# JSON转为python字典
data_dict = json.loads(data)

# 从字典中获取省份数据
province_data_dict = data_dict["areaTree"][0]["children"]

# 组装每个省份和确诊人数为元组,封装在列表内
data_list = [] # 绘图用的列表数据
for province_data in province_data_dict:
    province_name = province_data["name"]
    province_confirm = province_data["total"]["confirm"]
    data_list.append((province_name,province_confirm))
# print(data_list)

# 创建地图对象
map = Map()

# 添加数据
map.add("各省份确诊人数",data_list,"china")

# 设置全局配置项,选填
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图"), # 标题
    visualmap_opts=VisualMapOpts(
        is_show=True, # 是否显示
        is_piecewise=True, # 是否分段
        pieces=[
            {"min":1 , "max":99 , "label":"1-99人确诊" , "coclor":"#CCFFFF"},
            {"min":100 , "max":999 , "label":"100-999人确诊" , "coclor":"#FFFF99"},
            {"min":1000 , "max":4999 , "label":"1000-4999人确诊" , "coclor":"#FF9966"},
            {"min":5000 , "max":9999 , "label":"5000-9999人确诊" , "coclor":"#FF6666"},
            {"min":10000 , "max":99999 , "label":"10000-99999人确诊" , "coclor":"#CC3333"},
            {"min":100000 , "label":"100000+人确诊" , "coclor":"#990033"},
        ]
    ), # 视觉映射
)

# 绘图
map.render("全国疫情地图.html")

3.河南省地图

import json
from pyecharts.charts import Map
from pyecharts.options import *

f = open("D:/疫情.txt","r",encoding="UTF-8")
data = f.read() # 全部数据
f.close()

# JSON转为python字典
data_dict = json.loads(data)

# 取到河南省数据
cities_data_dict = data_dict["areaTree"][0]["children"][3]["children"]
# print(cities_data_dict)

# 组装每个城市和确诊人数为元组,封装在列表内
data_list = [] # 绘图用的列表数据
for city_data in cities_data_dict:
    city_name = city_data["name"]+"市"
    city_confirm = city_data["total"]["confirm"]
    data_list.append((city_name, city_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("河南省疫情分布",data_list,"河南")

# 设置全局配置项,选填
map.set_global_opts(
    title_opts=TitleOpts(title="河南省疫情分布地图"), # 标题
    visualmap_opts=VisualMapOpts(
        is_show=True, # 是否显示
        is_piecewise=True, # 是否分段
        pieces=[
            {"min":1 , "max":99 , "label":"1-99人确诊" , "coclor":"#CCFFFF"},
            {"min":100 , "max":999 , "label":"100-999人确诊" , "coclor":"#FFFF99"},
            {"min":1000 , "max":4999 , "label":"1000-4999人确诊" , "coclor":"#FF9966"},
            {"min":5000 , "max":9999 , "label":"5000-9999人确诊" , "coclor":"#FF6666"},
            {"min":10000 , "max":99999 , "label":"10000-99999人确诊" , "coclor":"#CC3333"},
            {"min":100000 , "label":"100000+人确诊" , "coclor":"#990033"},
        ]
    ), # 视觉映射
)

# 绘图
map.render("河南省疫情分布地图.html")

 


可以点个免费的赞吗!!!   

举报

相关推荐

0 条评论