0
点赞
收藏
分享

微信扫一扫

pandas+matplotlib——习题二


  • ​​作业一​​
  • ​​1.1 读取nlp文件夹下的labeledTraniData.tsv文件​​
  • ​​1.2 去掉html标签—切分成词/token—重组为新的句子​​
  • ​​1.3 将数据中的标点符号去掉(正则)​​
  • ​​1.4 文字转成小写–去掉停用词​​
  • ​​1.5 定义函数实现(1.2-1.4)的文本处理​​
  • ​​1.6 用apply方法,使用上步的函数重新处理加载数据​​


​运行环境 jupyter notebook​


import  matplotlib.pyplot as plt 
from pandas import DataFrame,Series
import pandas as pd
import numpy as np

plt.rcParams["font.sans-serif"]=['SimHei'] # 用于正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号

作业一

1.1 读取nlp文件夹下的labeledTraniData.tsv文件

df = pd.read_csv("nlp/labeledTrainData.tsv", sep='\t', escapechar='\\')
print('记录数: {}'.format(len(df)))
df.head()

输出:
记录数: 25000

   

id

sentiment

review

0

5814_8

1

With all this stuff going down at the moment w…

1

2381_9

1

“The Classic War of the Worlds” by Timothy Hin…

2

7759_3

0

The film starts with a manager (Nicholas Bell)…

3

3630_4

0

It must be assumed that those who praised this…

4

9495_8

1

Superbly trashy and wondrously unpretentious 8…

1.2 去掉html标签—切分成词/token—重组为新的句子

1. #提取出原始数据中的第一行review列中的文本数据,并用display函数显示 
display(df["review"],"原始数据")
输出:
0 With all this stuff going down at the moment w...
1 "The Classic War of the Worlds" by Timothy Hin...
2 The film starts with a manager (Nicholas Bell)...
3 It must be assumed that those who praised this...
4 A friend of mine bought this film for £1, and ...
5 <br /><br />This movie is full of references. ...
--------------------------------------------
display(df["review"][1],"原始数据")
输出:
"The Classic War of the Worlds" by Timothy Hines is a very entertaining film that
obviously goes to great effort and lengths to faithfully recreate H. G. Wells' classic book.
Mr. Hines succeeds in doing so...

2. #用BeautifulSoup将第四步中获取到的数据中的html标签去除 
df_01 = df["review"][1]
df_02 = BeautifulSoup(df_01,"lxml")
[s.extract() for s in df_02('script')]
df_03 = df_02.get_text()
display(df_03, "去掉HTML标签的数据")
输出:
"The Classic War of the Worlds" by Timothy Hines is a very entertaining film that obviously
goes to great effort and lengths to faithfully recreate H. G. Wells' classic book.
Mr. Hines succeeds in doing so.

1.3 将数据中的标点符号去掉(正则)

df_04 = df_03.replace(",", "").replace(".", "").replace('"', '').replace('\'', '')
df_04
输出:
'The Classic War of the Worlds by Timothy Hines is a very entertaining film that
obviously goes to great effort and lengths to faithfully recreate H G Wells
classic book Mr Hines succeeds in doing so I and those who watched his film with
me appreciated the fact that it was not the standard predictable Hollywood...'

1.4 文字转成小写–去掉停用词

#文字转成小写
str_02 = df_04.lower().split(' ')
str_03 = list(str_02)
display(str_03, "纯词列表数据")

输出:
纯词列表数据
['the', 'classic', 'war', 'of', 'the', 'worlds', 'by', 'timothy', 'hines', 'is', 'a', 'very',
'entertaining', 'film', 'that', 'obviously', 'goes', 'to', 'great', 'effort', 'and', 'lengths',
'to', 'faithfully', 'recreate', 'h', 'g', 'wells', 'classic', 'book',...]

#去掉上步数据中的英文停用词
"""
first = [1,2,3,4,5,6]
second = {}.fromkeys([4,5])
[w for w in first if w not in second]
"""
#加载英文停用词
stopwords = {}.fromkeys([line.rstrip() for line in open('nlp/stopwords.txt')])

#用加载的英文停用词,去除第七部数据中的英文停用词
words_nostop = [w for w in str_03 if w not in stopwords]
display(words_nostop, '去掉停用词数据')

#为确保所加载的英文停用词没有重复数据 set()去重

1.5 定义函数实现(1.2-1.4)的文本处理

def clean_text(text):
text = BeautifulSoup(text, 'html.parser').get_text() #去除网页标签
text = re.sub(r'[^a-zA-Z]', ' ', text) #去除文本中的特殊字符:‘’ ." 、'
words = text.lower().split() #文字转成小写词
words = [w for w in words if w not in eng_stopwords] #去除停用词
return ' '.join(words) #词语用空格分开

1.6 用apply方法,使用上步的函数重新处理加载数据

df['clean_review'] = df.review.apply(clean_text)
df.head()

  

id

sentiment

review

clean_review

0

5814_8

1

With all this stuff going down at the moment w…

stuff moment mj ve started listening music wat…

1

2381_9

1

“The Classic War of the Worlds” by Timothy Hin…

classic war worlds timothy hines entertaining …

2

7759_3

0

The film starts with a manager (Nicholas Bell)…

film starts manager nicholas bell investors ro…

3

3630_4

0

It must be assumed that those who praised this…

assumed praised film filmed opera didn read do…

4

9495_8

1

Superbly trashy and wondrously unpretentious 8…

superbly trashy wondrously unpretentious explo…


举报

相关推荐

0 条评论