- 作业一
- 1.1 读取nlp文件夹下的labeledTraniData.tsv文件
- 1.2 去掉html标签—切分成词/token—重组为新的句子
- 1.3 将数据中的标点符号去掉(正则)
- 1.4 文字转成小写–去掉停用词
- 1.5 定义函数实现(1.2-1.4)的文本处理
- 1.6 用apply方法,使用上步的函数重新处理加载数据
运行环境 jupyter notebook
import matplotlib.pyplot as plt
from pandas import DataFrame,Series
import pandas as pd
import numpy as np
plt.rcParams["font.sans-serif"]=['SimHei'] # 用于正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
作业一
1.1 读取nlp文件夹下的labeledTraniData.tsv文件
df = pd.read_csv("nlp/labeledTrainData.tsv", sep='\t', escapechar='\\')
print('记录数: {}'.format(len(df)))
df.head()
输出:
记录数: 25000
| id | sentiment | review |
0 | 5814_8 | 1 | With all this stuff going down at the moment w… |
1 | 2381_9 | 1 | “The Classic War of the Worlds” by Timothy Hin… |
2 | 7759_3 | 0 | The film starts with a manager (Nicholas Bell)… |
3 | 3630_4 | 0 | It must be assumed that those who praised this… |
4 | 9495_8 | 1 | Superbly trashy and wondrously unpretentious 8… |
1.2 去掉html标签—切分成词/token—重组为新的句子
1. #提取出原始数据中的第一行review列中的文本数据,并用display函数显示
display(df["review"],"原始数据")
输出:
0 With all this stuff going down at the moment w...
1 "The Classic War of the Worlds" by Timothy Hin...
2 The film starts with a manager (Nicholas Bell)...
3 It must be assumed that those who praised this...
4 A friend of mine bought this film for £1, and ...
5 <br /><br />This movie is full of references. ...
--------------------------------------------
display(df["review"][1],"原始数据")
输出:
"The Classic War of the Worlds" by Timothy Hines is a very entertaining film that
obviously goes to great effort and lengths to faithfully recreate H. G. Wells' classic book.
Mr. Hines succeeds in doing so...
2. #用BeautifulSoup将第四步中获取到的数据中的html标签去除
df_01 = df["review"][1]
df_02 = BeautifulSoup(df_01,"lxml")
[s.extract() for s in df_02('script')]
df_03 = df_02.get_text()
display(df_03, "去掉HTML标签的数据")
输出:
"The Classic War of the Worlds" by Timothy Hines is a very entertaining film that obviously
goes to great effort and lengths to faithfully recreate H. G. Wells' classic book.
Mr. Hines succeeds in doing so.
1.3 将数据中的标点符号去掉(正则)
df_04 = df_03.replace(",", "").replace(".", "").replace('"', '').replace('\'', '')
df_04
输出:
'The Classic War of the Worlds by Timothy Hines is a very entertaining film that
obviously goes to great effort and lengths to faithfully recreate H G Wells
classic book Mr Hines succeeds in doing so I and those who watched his film with
me appreciated the fact that it was not the standard predictable Hollywood...'
1.4 文字转成小写–去掉停用词
#文字转成小写
str_02 = df_04.lower().split(' ')
str_03 = list(str_02)
display(str_03, "纯词列表数据")
输出:
纯词列表数据
['the', 'classic', 'war', 'of', 'the', 'worlds', 'by', 'timothy', 'hines', 'is', 'a', 'very',
'entertaining', 'film', 'that', 'obviously', 'goes', 'to', 'great', 'effort', 'and', 'lengths',
'to', 'faithfully', 'recreate', 'h', 'g', 'wells', 'classic', 'book',...]
#去掉上步数据中的英文停用词
"""
first = [1,2,3,4,5,6]
second = {}.fromkeys([4,5])
[w for w in first if w not in second]
"""
#加载英文停用词
stopwords = {}.fromkeys([line.rstrip() for line in open('nlp/stopwords.txt')])
#用加载的英文停用词,去除第七部数据中的英文停用词
words_nostop = [w for w in str_03 if w not in stopwords]
display(words_nostop, '去掉停用词数据')
#为确保所加载的英文停用词没有重复数据 set()去重
1.5 定义函数实现(1.2-1.4)的文本处理
def clean_text(text):
text = BeautifulSoup(text, 'html.parser').get_text() #去除网页标签
text = re.sub(r'[^a-zA-Z]', ' ', text) #去除文本中的特殊字符:‘’ ." 、'
words = text.lower().split() #文字转成小写词
words = [w for w in words if w not in eng_stopwords] #去除停用词
return ' '.join(words) #词语用空格分开
1.6 用apply方法,使用上步的函数重新处理加载数据
df['clean_review'] = df.review.apply(clean_text)
df.head()
| id | sentiment | review | clean_review |
0 | 5814_8 | 1 | With all this stuff going down at the moment w… | stuff moment mj ve started listening music wat… |
1 | 2381_9 | 1 | “The Classic War of the Worlds” by Timothy Hin… | classic war worlds timothy hines entertaining … |
2 | 7759_3 | 0 | The film starts with a manager (Nicholas Bell)… | film starts manager nicholas bell investors ro… |
3 | 3630_4 | 0 | It must be assumed that those who praised this… | assumed praised film filmed opera didn read do… |
4 | 9495_8 | 1 | Superbly trashy and wondrously unpretentious 8… | superbly trashy wondrously unpretentious explo… |