0
点赞
收藏
分享

微信扫一扫

Java 平衡二叉树和AVL

Java 平衡二叉树和AVL_二分搜索

Java 平衡二叉树和AVL_删除节点_02

 

 

Java 平衡二叉树和AVL_子树_03

 

Java 平衡二叉树和AVL_子树_04

 

Java 平衡二叉树和AVL_二分搜索_05

Java 平衡二叉树和AVL_删除节点_06

Java 平衡二叉树和AVL_删除节点_07

 

 

 

  与BST<> 进行对比

import java.util.ArrayList;
import java.util.Collections;

public class Main {

public static void main(String[] args) {

System.out.println("Pride and Prejudice");

ArrayList<String> words = new ArrayList<>();
if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
System.out.println("Total words: " + words.size());

// Collections.sort(words);

// Test BST
long startTime = System.nanoTime();

BST<String, Integer> bst = new BST<>();
for (String word : words) {
if (bst.contains(word))
bst.set(word, bst.get(word) + 1);
else
bst.add(word, 1);
}

for(String word: words)
bst.contains(word);

long endTime = System.nanoTime();

double time = (endTime - startTime) / 1000000000.0;
System.out.println("BST: " + time + " s");


// Test AVL Tree
startTime = System.nanoTime();

AVLTree<String, Integer> avl = new AVLTree<>();
for (String word : words) {
if (avl.contains(word))
avl.set(word, avl.get(word) + 1);
else
avl.add(word, 1);
}

for(String word: words)
avl.contains(word);

endTime = System.nanoTime();

time = (endTime - startTime) / 1000000000.0;
System.out.println("AVL: " + time + " s");
}

System.out.println();
}
}

Java 平衡二叉树和AVL_二分搜索_08

 

import java.util.ArrayList;

public class AVLTree<K extends Comparable<K>, V> {

private class Node{
public K key;
public V value;
public Node left, right;
public int height;

public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}

private Node root;
private int size;

public AVLTree(){
root = null;
size = 0;
}

public int getSize(){
return size;
}

public boolean isEmpty(){
return size == 0;
}

// 判断该二叉树是否是一棵二分搜索树
public boolean isBST(){

ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for(int i = 1 ; i < keys.size() ; i ++)
if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
return false;
return true;
}

private void inOrder(Node node, ArrayList<K> keys){

if(node == null)
return;

inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}

// 判断该二叉树是否是一棵平衡二叉树
public boolean isBalanced(){
return isBalanced(root);
}

// 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
private boolean isBalanced(Node node){

if(node == null)
return true;

int balanceFactor = getBalanceFactor(node);
if(Math.abs(balanceFactor) > 1)
return false;
return isBalanced(node.left) && isBalanced(node.right);
}

// 获得节点node的高度
private int getHeight(Node node){
if(node == null)
return 0;
return node.height;
}

// 获得节点node的平衡因子
private int getBalanceFactor(Node node){
if(node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}

// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;

// 向右旋转过程
x.right = y;
y.left = T3;

// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

return x;
}

// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;

// 向左旋转过程
x.left = y;
y.right = T2;

// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

return x;
}

// 向二分搜索树中添加新的元素(key, value)
public void add(K key, V value){
root = add(root, key, value);
}

// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){

if(node == null){
size ++;
return new Node(key, value);
}

if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;

// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

// 计算平衡因子
int balanceFactor = getBalanceFactor(node);

// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);

// RR
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);

// LR
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}

// RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}

return node;
}

// 返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node, K key){

if(node == null)
return null;

if(key.equals(node.key))
return node;
else if(key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}

public boolean contains(K key){
return getNode(root, key) != null;
}

public V get(K key){

Node node = getNode(root, key);
return node == null ? null : node.value;
}

public void set(K key, V newValue){
Node node = getNode(root, key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");

node.value = newValue;
}

// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}

// 从二分搜索树中删除键为key的节点
public V remove(K key){

Node node = getNode(root, key);
if(node != null){
root = remove(root, key);
return node.value;
}
return null;
}

private Node remove(Node node, K key){

if( node == null )
return null;

Node retNode;
if( key.compareTo(node.key) < 0 ){
node.left = remove(node.left , key);
// return node;
retNode = node;
}
else if(key.compareTo(node.key) > 0 ){
node.right = remove(node.right, key);
// return node;
retNode = node;
}
else{ // key.compareTo(node.key) == 0

// 待删除节点左子树为空的情况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
// return rightNode;
retNode = rightNode;
}

// 待删除节点右子树为空的情况
else if(node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
// return leftNode;
retNode = leftNode;
}

// 待删除节点左右子树均不为空的情况
else{
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
//successor.right = removeMin(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;

node.left = node.right = null;

// return successor;
retNode = successor;
}
}

if(retNode == null)
return null;

// 更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

// 计算平衡因子
int balanceFactor = getBalanceFactor(retNode);

// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
return rightRotate(retNode);

// RR
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
return leftRotate(retNode);

// LR
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}

// RL
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}

return retNode;
}

}

  

public int[] intersect(int[] nums1, int[] nums2) {

AVLTree<Integer, Integer> map = new AVLTree<>();
for(int num: nums1){
if(!map.contains(num))
map.add(num, 1);
else
map.add(num, map.get(num) + 1);
}

ArrayList<Integer> res = new ArrayList<>();
for(int num: nums2){
if(map.contains(num)){
res.add(num);
map.add(num, map.get(num) - 1);
if(map.get(num) == 0)
map.remove(num);
}
}

int[] ret = new int[res.size()];
for(int i = 0 ; i < res.size() ; i ++)
ret[i] = res.get(i);

return ret;
}

 

public int uniqueMorseRepresentations(String[] words) {

String[] codes = {".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."};
AVLTree<String, Object> set = new AVLTree<>();
for(String word: words){
StringBuilder res = new StringBuilder();
for(int i = 0 ; i < word.length() ; i ++)
res.append(codes[word.charAt(i) - 'a']);

set.add(res.toString(), null);
}

return set.getSize();
}

  AvLMap:

public interface Map<K, V> {

void add(K key, V value);
boolean contains(K key);
V get(K key);
void set(K key, V newValue);
V remove(K key);
int getSize();
boolean isEmpty();
}

  

public class AVLMap<K extends Comparable<K>, V> implements Map<K, V> {

private AVLTree<K, V> avl;

public AVLMap(){
avl = new AVLTree<>();
}

@Override
public int getSize(){
return avl.getSize();
}

@Override
public boolean isEmpty(){
return avl.isEmpty();
}

@Override
public void add(K key, V value){
avl.add(key, value);
}

@Override
public boolean contains(K key){
return avl.contains(key);
}

@Override
public V get(K key){
return avl.get(key);
}

@Override
public void set(K key, V newValue){
avl.set(key, newValue);
}

@Override
public V remove(K key){
return avl.remove(key);
}
}

  

public interface Set<E> {

void add(E e);
boolean contains(E e);
void remove(E e);
int getSize();
boolean isEmpty();
}

  

public class AVLSet<E extends Comparable<E>> implements Set<E> {

private AVLTree<E, Object> avl;

public AVLSet(){
avl = new AVLTree<>();
}

@Override
public int getSize(){
return avl.getSize();
}

@Override
public boolean isEmpty(){
return avl.isEmpty();
}

@Override
public void add(E e){
avl.add(e, null);
}

@Override
public boolean contains(E e){
return avl.contains(e);
}

@Override
public void remove(E e){
avl.remove(e);
}
}

  

public int[] intersection(int[] nums1, int[] nums2) {

AVLSet<Integer> set = new AVLSet<>();
for(int num: nums1)
set.add(num);

ArrayList<Integer> list = new ArrayList<>();
for(int num: nums2){
if(set.contains(num)){
list.add(num);
set.remove(num);
}
}

int[] res = new int[list.size()];
for(int i = 0 ; i < list.size() ; i ++)
res[i] = list.get(i);
return res;
}

  

public int[] intersect(int[] nums1, int[] nums2) {

AVLMap<Integer, Integer> map = new AVLMap<>();
for(int num: nums1){
if(!map.contains(num))
map.add(num, 1);
else
map.add(num, map.get(num) + 1);
}

ArrayList<Integer> res = new ArrayList<>();
for(int num: nums2){
if(map.contains(num)){
res.add(num);
map.add(num, map.get(num) - 1);
if(map.get(num) == 0)
map.remove(num);
}
}

int[] ret = new int[res.size()];
for(int i = 0 ; i < res.size() ; i ++)
ret[i] = res.get(i);

return ret;
}

  

 



举报

相关推荐

0 条评论