文章目录
- 一、安装OpenVINO
- 二、配置、生成、编译(略过)
- 三、配置环境变量
- 附:openvino的python环境变量
openvino自带opencv,可直接使用加速DNN模块,若想使用opencv_contrib模块,便自行编译了
一、安装OpenVINO
OpenVINO是英特尔基于自身现有的硬件平台开发的一种可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,支持各种英特尔平台的硬件加速器上进行深度学习,并且允许直接异构执行。 支持在Windows与Linux系统,Python/C++语言。
Opencv4.0 以上dnn模块添加了对Intel’s Inference Engine的支持,可以通过OpenVINO对计算进行加速。
点击下载:w_openvino_toolkit_p_2021.4.582.exe 双击安装,默认直接下一步,安装位置如下截图。
这里需要特别注意下,OpenVINO本身不支持Python3.7版本。为此我安装了python3.6.x
执行脚本文件C:\Program Files (x86)\Intel\openvino_2021.4.582\bin\setupvars.bat
至此安装完成,以下为验证。
进入目录:C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\demo
执行:demo_benchmark_app.bat
输出步骤阶段性输出大致如下(截图太长了)
################|| Downloading squeezenet1.1 ||################
C:\Users\xxx\Documents\Intel\OpenVINO\openvino_models\models\public\squeezenet1.1
squeezenet1.1 model downloading completed
###############|| Generate VS solution for Inference Engine samples using cmake ||###############
-- Configuring done
-- Generating done
-- Build files have been written to: C:/Users/xxx/Documents/Intel/OpenVINO/inference_engine_samples_build
###############|| Build Inference Engine samples using MS Visual Studio (MSBuild.exe) ||###############
"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Current\Bin\MSBuild.exe" Samples.sln /p:Configuration=Release /t:cpp_samples\benchmark_app /clp:ErrorsOnly /m
用于 .NET Framework 的 Microsoft (R) 生成引擎版本 16.10.2+857e5a733
###############|| Run Inference Engine benchmark app ||###############
Full device name: Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz
Count: 1000 iterations
Duration: 2679.38 ms
Latency: 10.46 ms
Throughput: 373.22 FPS
###############|| Inference Engine benchmark app completed successfully ||###############
配置模型优化程序
进入目录:C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\model_optimizer\install_prerequisites
执行:install_prerequisites.bat
(批处理文件以配置Caffe *,TensorFlow *,MXNet *,Kaldi *和ONNX *的模型优化器)
验证
进入目录:C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\demo
运行图像分类验证脚本:demo_squeezenet_download_convert_run.bat
运行推理管道验证脚本:demo_security_barrier_camera.bat
后端输出如下:
二、配置、生成、编译(略过)
查看openvino自带opencv版本
C:\Program Files (x86)\Intel\openvino_2021.4.582\opencv\version.txt
4.5.3-51-gfd2b5411e (OpenVINO/2021.4)
51
releases/openvino/2021.4
fd2b5411e4d73739d85d53d0c2e9bf32251c50e3
General configuration for OpenCV 4.5.3-openvino =====================================
Version control: fd2b5411e4d73739d85d53d0c2e9bf32251c50e3
Platform:
Timestamp: 2021-06-22T10:35:20Z
Host: Windows 10.0.19043 AMD64
CMake: 3.14.5
CMake generator: Visual Studio 16 2019
CMake build tool: C:/Program Files (x86)/Microsoft Visual Studio/2019/BuildTools/MSBuild/Current/Bin/MSBuild.exe
MSVC: 1926
打开cmake,设置好源代码路径与编译输出路径。
点击【Configure】后,做如下操作:(使用search查找,快速操作)
- WITH_INF_ENGINE(勾选)
- WITH_TBB(勾选)
- OPENCV_ENABLE_NONFREE(勾选)
- OPENCV_EXTRA_MODULES_PATH(加入opencv_contrib模块)
D:\opencv_contrib-4.5.2\modules
- InferenceEngine_DIR(加入openvino的编译路径)
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\inference_engine\share
可选操作:去掉你不想编译的,如:
- BUILD_opencv_python3
- BUILD_opencv_python_bindings_generator
配置完截图如下:
再次点击【Generate】按钮。(截图如下)
然后点击【Generate】按钮,就会成功生成一个VS工程项目。
选择 【ALL BUILD】右键 ->生成;运行完成之后,选择 【INSTALL】右键 ->生成,(切换到release模式下,重复这两步操作)
三、配置环境变量
新建空项目,打开属性管理器,选择Release|x64, 右击添加新项目属性表:
- 配置VC++目录 -> 包含目录:
C:\Program Files (x86)\Intel\openvino_2021.4.582\opencv\include
C:\Program Files (x86)\Intel\openvino_2021.4.582\opencv\include\opencv2
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\inference_engine\include
- 配置VC++目录 -> 库目录:
C:\Program Files (x86)\Intel\openvino_2021.4.582\opencv\lib
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\inference_engine\lib\intel64\Release
- 配置链接器 -> 输入 -> 附加依赖项:
将库目录的文件名全部加入即可(注意release与Debug区分,文件名如下)。
inference_engine.lib
inference_engine_c_api.lib
inference_engine_transformations.lib
opencv_calib3d453.lib
opencv_core453.lib
opencv_dnn453.lib
opencv_features2d453.lib
opencv_flann453.lib
opencv_gapi453.lib
opencv_highgui453.lib
opencv_imgcodecs453.lib
opencv_imgproc453.lib
opencv_ml453.lib
opencv_objdetect453.lib
opencv_photo453.lib
opencv_stitching453.lib
opencv_video453.lib
opencv_videoio453.lib
- 配置环境变量
【此电脑 -> 属性 -> 高级系统设置 -> 环境变量 -> 系统变量 -> 找到Path -> 编辑 -> 新建】
新增如下:
C:\Program Files (x86)\Intel\openvino_2021.4.582\opencv\bin
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\inference_engine\external\tbb\bin
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\inference_engine\bin\intel64\Release
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\ngraph\lib
- 重启visual studio2019。
关于使用请查看后续文章。
附:openvino的python环境变量
我的python是3.6版本的。请根据自己实际情况更改
C:\Program Files (x86)\Intel\openvino_2021.4.582\python\python3.6
C:\Program Files (x86)\Intel\openvino_2021.4.582\deployment_tools\model_optimizer
可能需要将C:\Program Files (x86)\Intel\openvino_2021.4.582\python\python3.6
文件夹下
所有文件复制到:E:\Anaconda\Lib\site-packages
文件夹下
参考:
解决Win10环境变量太大的问题:javascript:void(0)使用OpenVINO ToolKit 实时推断
OpenVINO https://cloud.tencent.com/developer/article/1492646 OpenVINO测试