0
点赞
收藏
分享

微信扫一扫

Torch与Numpy简单比较(5)


 (1)numpy array 和 torch tensor之间相互转换

import  torch
import numpy as np

np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()

print("\nnp_data:\n",np_data, "\ntorch_data:\n",torch_data, "\ntensor2array:\n", tensor2array)

(2)numpy与torch数学运算

#绝对值计算
import torch
import numpy as np
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data) #转换成32位浮点 tensor

print("\nabs\n",'\nnumpy: \n', np.abs(data), '\ntorch:\n', torch.abs(tensor))

#sin 三角函数 sin
print("\nsin\n",'\nnumpy: \n', np.sin(data),
'\ntorch: \n', torch.sin(tensor))

#mean 均值
print("\nmean\n",'\nnumpy: \n', np.mean(data),
'\ntorch: \n', torch.mean(tensor))

(3)numpy与torch矩阵运算

import numpy as np
import torch
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data)
print('\nmatrix multiplication\n','\nnumpy: \n',np.matmul(data, data),
'\ntorch:\n', torch.mm(tensor, tensor))

注:文章内容主要引用:​​https://www.pytorchtutorial.com/​​

了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:

Torch与Numpy简单比较(5)_计算机视觉

下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料

举报

相关推荐

0 条评论