①C语言经典算法大全上(建议收藏)👈 |
👍C语言算法上👈
- 1 💜河内之塔
- 2 😄费式数列
- 3 👍巴斯卡三角形
- 4 🌝三色棋
- 5 🌔老鼠走迷官(一)
- 6 🏀老鼠走迷官(二)
- 7 🍪骑士走棋盘
- 8 🍏八皇后
- 9 🍒八枚银币
- 10 💣生命游戏
- 11 🔔字串核对
- 12 💝双色、三色河内塔
- 13 🐑背包问题(Knapsack Problem)
- 14 🐮蒙地卡罗法求 PI
- 15 🐱筛选求质数
1 💜河内之塔
说明
河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市;1883年法国数学家 Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。
解法
#include <stdio.h>
void hanoi(int n, char A, char B, char C) {
if(n == 1) {
printf("Move sheet %d from %c to %c\n", n, A, C);
}
else {
hanoi(n-1,A, C, B);
printf("Move sheet %d from %c to %c\n", n, A, C);
hanoi(n-1, B,A, C);
}
}
int main() {
int n;
printf("请输入盘数:");
scanf("%d", &n);
hanoi(n, 'A', 'B', 'C');
return 0;
}
2 😄费式数列
说明
Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:「若有一只免子每个月生一只小免 子,一个月后小免子也开始生产。起初只有一只免子,一个月后就有两只免子,二个月后有三只免子,三个月后有五只免子(小免子投入生产)…。如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例如以下:
1、1 、2、3、5、8、13、21、34、55、89…
解法
#include <stdio.h>
#include <stdlib.h>
#define N 20
int main(void) {
int Fib[N] = {0};
int i;
Fib[0] = 0;
Fib[1] = 1;
for(i = 2; i < N; i++)
Fib[i] = Fib[i-1] + Fib[i-2];
for(i = 0; i < N; i++)
printf("%d ", Fib[i]);
printf("\n");
return 0;
}
运行结果
3 👍巴斯卡三角形
#include <stdio.h>
#define N 12
long combi(int n, int r){
int i;
long p = 1;
for(i = 1; i <= r; i++)
p = p * (n-i+1) / i;
return p;
}
void main() {
int n, r, t;
for(n = 0; n <= N; n++) {
for(r = 0; r <= n; r++) {
int i;/* 排版设定开始 */
if(r == 0) {
for(i = 0; i <= (N-n); i++)
printf(" ");
}else {
printf(" ");
} /* 排版设定结束 */
printf("%3d", combi(n, r));
}
printf("\n");
}
}
运行结果
4 🌝三色棋
说明
三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为Dutch Nation Flag(Dijkstra为荷兰人),而多数的作者则使用Three-Color Flag来称之。
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上进行这个动作,而且一次只能调换两个旗子。
解法
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来作辅助,问题的解法很简单,您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到白色留在中间,遇到红色往后移,如下所示:
只是要让移动次数最少的话,就要有些技巧:
如果图中W所在的位置为白色,则W+1,表示未处理的部份移至至白色群组。
如果W部份为蓝色,则B与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。
如果W所在的位置是红色,则将W与R交换,但R要减1,表示未处理的部份减1。
注意B、W、R并不是三色旗的个数,它们只是一个移动的指标;什幺时候移动结束呢?一开始时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗子就都是红色了,此时就可以结束移动,如下所示:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BLUE 'b'
#define WHITE 'w'
#define RED 'r'
#define SWAP(x, y) { char temp;\
temp = color[x];\
color[x] = color[y];\
color[y] = temp; }
int main() {
char color[] = {'r', 'w', 'b', 'w', 'w',
'b', 'r', 'b', 'w', 'r', '\0'};
int wFlag = 0;
int bFlag = 0;
int rFlag = strlen(color) - 1;
int i;
for(i = 0; i < strlen(color); i++)
printf("%c ", color[i]);
printf("\n");
while(wFlag <= rFlag) {
if(color[wFlag] == WHITE)
wFlag++;
else if(color[wFlag] == BLUE) {
SWAP(bFlag, wFlag);
bFlag++; wFlag++;
}
else {
while(wFlag < rFlag && color[rFlag] == RED)
rFlag--;
SWAP(rFlag, wFlag);
rFlag--;
} }
for(i = 0; i < strlen(color); i++)
printf("%c ", color[i]);
printf("\n");
return 0;
}
运行结果
5 🌔老鼠走迷官(一)
说明
老鼠走迷宫是递回求解的基本题型,我们在二维阵列中使用2表示迷宫墙壁,使用1来表示老鼠的行走路径,试以程式求出由入口至出口的路径。
解法
老鼠的走法有上、左、下、右四个方向,在每前进一格之后就选一个方向前进,无法前进时退回选择下一个可前进方向,如此在阵列中依序测试四个方向,直到走到出口为止,这是递回的基本题,请直接看程式应就可以理解。
#include <stdio.h>
#include <stdlib.h>
int visit(int, int);
int maze[7][7] = {{2, 2, 2, 2, 2, 2, 2},
{2, 0, 0, 0, 0, 0, 2},
{2, 0, 2, 0, 2, 0, 2},
{2, 0, 0, 2, 0, 2, 2},
{2, 2, 0, 2, 0, 2, 2},
{2, 0, 0, 0, 0, 0, 2},
{2, 2, 2, 2, 2, 2, 2}};
int startI = 1, startJ = 1; // 入口
int endI = 5, endJ = 5; // 出口
int success = 0;
int main(void) {
int i, j;
printf("显示迷宫:\n");
for(i = 0; i < 7; i++) {
for(j = 0; j < 7; j++)
if(maze[i][j] == 2)
printf("█");
else
printf(" ");
printf("\n");
}
if(visit(startI, startJ) == 0)
printf("\n没有找到出口!\n");
else {
printf("\n显示路径:\n");
for(i = 0; i < 7; i++) {
for(j = 0; j < 7; j++) {
if(maze[i][j] == 2)
printf("█");
else if(maze[i][j] == 1)
printf("◇");
else
printf(" ");
}
printf("\n");
} }
return 0;
}
int visit(int i, int j) {
maze[i][j] = 1;
if(i == endI && j == endJ)
success = 1;
if(success != 1 && maze[i][j+1] == 0) visit(i, j+1);
if(success != 1 && maze[i+1][j] == 0) visit(i+1, j);
if(success != 1 && maze[i][j-1] == 0) visit(i, j-1);
if(success != 1 && maze[i-1][j] == 0) visit(i-1, j);
if(success != 1)
maze[i][j] = 0;
return success;
}
运行结果
6 🏀老鼠走迷官(二)
说明
由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不只一条,如何求出所有的路径呢?
解法
求所有路径看起来复杂但其实更简单,只要在老鼠走至出口时显示经过的路径,然后退回上一格重新选择下一个位置继续递回就可以了,比求出单一路径还简单,我们的程式只要作一点修改就可以了。
#include <stdio.h>
#include <stdlib.h>
void visit(int, int);
int maze[9][9] = {{2, 2, 2, 2, 2, 2, 2, 2, 2},
{2, 0, 0, 0, 0, 0, 0, 0, 2},
{2, 0, 2, 2, 0, 2, 2, 0, 2},
{2, 0, 2, 0, 0, 2, 0, 0, 2},
{2, 0, 2, 0, 2, 0, 2, 0, 2},
{2, 0, 0, 0, 0, 0, 2, 0, 2},
{2, 2, 0, 2, 2, 0, 2, 2, 2},
{2, 0, 0, 0, 0, 0, 0, 0, 2},
{2, 2, 2, 2, 2, 2, 2, 2, 2}};
int startI = 1, startJ = 1; // 入口
int endI = 7, endJ = 7; // 出口
int main(void) {
int i, j;
printf("显示迷宫:\n");
for(i = 0; i < 7; i++) {
for(j = 0; j < 7; j++)
if(maze[i][j] == 2)
printf("█");
else
printf(" ");
printf("\n");
}
visit(startI, startJ);
return 0;
}
void visit(int i, int j) {
int m, n;
maze[i][j] = 1;
if(i == endI && j == endJ) {
printf("\n显示路径:\n");
for(m = 0; m < 9; m++) {
for(n = 0; n < 9; n++)
if(maze[m][n] == 2)
printf("█");
else if(maze[m][n] == 1)
printf("◇");
else
printf(" ");
printf("\n");
} }
if(maze[i][j+1] == 0) visit(i, j+1);
if(maze[i+1][j] == 0) visit(i+1, j);
if(maze[i][j-1] == 0) visit(i, j-1);
if(maze[i-1][j] == 0) visit(i-1, j);
maze[i][j] = 0;
}
运行结果
7 🍪骑士走棋盘
说明
骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位置?
解法
骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。
#include <stdio.h>
int board[8][8] = {0};
int main(void) {
int startx, starty;
int i, j;
printf("输入起始点:");
scanf("%d %d", &startx, &starty);
if(travel(startx, starty)) {
printf("游历完成!\n");
}
else {
printf("游历失败!\n");
}
for(i = 0; i < 8; i++) {
for(j = 0; j < 8; j++) {
printf("%2d ", board[i][j]);
}
putchar('\n');
}
return 0;
}
int travel(int x, int y) {
// 对应骑士可走的八个方向
int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1};
// 测试下一步的出路
int nexti[8] = {0};
int nextj[8] = {0};
// 记录出路的个数
int exists[8] = {0};
int i, j, k, m, l;
int tmpi, tmpj;
int count, min, tmp;
i = x;
j = y;
board[i][j] = 1;
for(m = 2; m <= 64; m++) {
for(l = 0; l < 8; l++)
exists[l] = 0;
l = 0;
// 试探八个方向
for(k = 0; k < 8; k++) {
tmpi = i + ktmove1[k];
tmpj = j + ktmove2[k];
// 如果是边界了,不可走
if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7)
continue;
// 如果这个方向可走,记录下来
if(board[tmpi][tmpj] == 0) {
nexti[l] = tmpi;
nextj[l] = tmpj;
// 可走的方向加一个
l++;
} }
count = l;
// 如果可走的方向为0个,返回
if(count == 0) {
return 0;
}
else if(count == 1) {
// 只有一个可走的方向
// 所以直接是最少出路的方向
min = 0;
}
else {
// 找出下一个位置的出路数
for(l = 0; l < count; l++) {
for(k = 0; k < 8; k++) {
tmpi = nexti[l] + ktmove1[k];
tmpj = nextj[l] + ktmove2[k];
if(tmpi < 0 || tmpj < 0 ||
tmpi > 7 || tmpj > 7) {
continue;
}
if(board[tmpi][tmpj] == 0)
exists[l]++;
} }
tmp = exists[0];
min = 0;
// 从可走的方向中寻找最少出路的方向
for(l = 1; l < count; l++) {
if(exists[l] < tmp) {
tmp = exists[l];
min = l;
} }
}
// 走最少出路的方向
i = nexti[min];
j = nextj[min];
board[i][j] = m;
}
return 1;
}
8 🍏八皇后
说明
西洋棋中的皇后可以直线前进,吃掉遇到的所有棋子,如果棋盘上有八个皇后,则这八个皇后如何相安无事的放置在棋盘上,1970年与1971年, E.W.Dijkstra与N.Wirth曾经用这个问题来讲解程式设计之技巧。
解法
关于棋盘的问题,都可以用递回求解,然而如何减少递回的次数?在八个皇后的问题中,不必要所有的格子都检查过,例如若某列检查过,该该列的其它格子就不用再检查了,这个方法称为分支修剪。
#include <stdio.h>
#include <stdlib.h>
#define N 8
int column[N+1]; // 同栏是否有皇后,1表示有
int rup[2*N+1]; // 右上至左下是否有皇后
int lup[2*N+1]; // 左上至右下是否有皇后
int queen[N+1] = {0};
int num; // 解答编号
void backtrack(int); // 递回求解
int main(void) {
int i;
num = 0;
for(i = 1; i <= N; i++)
column[i] = 1;
for(i = 1; i <= 2*N; i++)
rup[i] = lup[i] = 1;
backtrack(1);
return 0;
}
void showAnswer() {
int x, y;
printf("\n解答 %d\n", ++num);
for(y = 1; y <= N; y++) {
for(x = 1; x <= N; x++) {
if(queen[y] == x) {
printf(" Q");
}
else {
printf(" .");
} }
printf("\n");
}
}
void backtrack(int i) {
int j;
if(i > N) {
showAnswer();
}
else {
for(j = 1; j <= N; j++) {
if(column[j] == 1 &&
rup[i+j] == 1 && lup[i-j+N] == 1) {
queen[i] = j;
// 设定为占用
column[j] = rup[i+j] = lup[i-j+N] = 0;
backtrack(i+1);
column[j] = rup[i+j] = lup[i-j+N] = 1;
}
}
}
}
运行结果
9 🍒八枚银币
说明
现有八枚银币a b c d e f g h,已知其中一枚是假币,其重量不同于真币,但不知是较轻或较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。
解法
单就求假币的问题是不难,但问题限制使用最少的比较次数,所以我们不能以单纯的回圈比较来求解,我们可以使用决策树(decision tree),使用分析与树状图来协助求解。一个简单的状况是这样的,我们比较a+b+c与d+e+f ,如果相等,则假币必是g或h,我们先比较g或h哪个较重,如果g较重,再与a比较(a是真币),如果g等于a,则g为真币,则h为假币,由于h比g轻 而 g是真币,则h假币的重量比真币轻。
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void compare(int[], int, int, int);
void eightcoins(int[]);
int main(void) {
int coins[8] = {0};
int i;
srand(time(NULL));
for(i = 0; i < 8; i++)
coins[i] = 10;
printf("\n输入假币重量(比10大或小):");
scanf("%d", &i);
coins[rand() % 8] = i;
eightcoins(coins);
printf("\n\n列出所有钱币重量:");
for(i = 0; i < 8; i++)
printf("%d ", coins[i]);
printf("\n");
return 0;
}
void compare(int coins[], int i, int j, int k) {
if(coins[i] > coins[k])
printf("\n假币 %d 较重", i+1);
else
printf("\n假币 %d 较轻", j+1);
}
void eightcoins(int coins[]) {
if(coins[0]+coins[1]+coins[2] ==
coins[3]+coins[4]+coins[5]) {
if(coins[6] > coins[7])
compare(coins, 6, 7, 0);
else
compare(coins, 7, 6, 0);
}
else if(coins[0]+coins[1]+coins[2] >
coins[3]+coins[4]+coins[5]) {
if(coins[0]+coins[3] == coins[1]+coins[4])
compare(coins, 2, 5, 0);
else if(coins[0]+coins[3] > coins[1]+coins[4])
compare(coins, 0, 4, 1);
if(coins[0]+coins[3] < coins[1]+coins[4])
compare(coins, 1, 3, 0);
}
else if(coins[0]+coins[1]+coins[2] <
coins[3]+coins[4]+coins[5]) {
if(coins[0]+coins[3] == coins[1]+coins[4])
compare(coins, 5, 2, 0);
else if(coins[0]+coins[3] > coins[1]+coins[4])
compare(coins, 3, 1, 0);
if(coins[0]+coins[3] < coins[1]+coins[4])
compare(coins, 4, 0, 1);
}
}
运行结果
10 💣生命游戏
说明
生命游戏(game of life)为1970年由英国数学家J. H. Conway所提出,某一细胞的邻居包括上、下、左、右、左上、左下、右上与右下相邻之细胞,游戏规则如下:
孤单死亡:如果细胞的邻居小于一个,则该细胞在下一次状态将死亡。
拥挤死亡:如果细胞的邻居在四个以上,则该细胞在下一次状态将死亡。
稳定:如果细胞的邻居为二个或三个,则下一次状态为稳定存活。
复活:如果某位置原无细胞存活,而该位置的邻居为三个,则该位置将复活一细胞。
解法
生命游戏的规则可简化为以下,并使用CASE比对即可使用程式实作:
邻居个数为0、1、4、5、6、7、8时,则该细胞下次状态为死亡。
邻居个数为2时,则该细胞下次状态为复活。
邻居个数为3时,则该细胞下次状态为稳定。
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#define MAXROW 10
#define MAXCOL 25
#define DEAD 0
#define ALIVE 1
int map[MAXROW][MAXCOL], newmap[MAXROW][MAXCOL];
void init();
int neighbors(int, int);
void outputMap();
void copyMap();
int main() {
int row, col;
char ans;
init();
while(1) {
outputMap();
for(row = 0; row < MAXROW; row++) {
for(col = 0; col < MAXCOL; col++) {
switch (neighbors(row, col)) {
case 0:
case 1:
case 4:
case 5:
case 6:
case 7:
case 8:
newmap[row][col] = DEAD;
break;
case 2:
newmap[row][col] = map[row][col];
break;
case 3:
newmap[row][col] = ALIVE;
break;
} } }
copyMap();
printf("\nContinue next Generation ? ");
getchar();
ans = toupper(getchar());
if(ans != 'Y') break;
}
return 0;
}
void init() {
int row, col;
for(row = 0; row < MAXROW; row++)
for(col = 0; col < MAXCOL; col++)
map[row][col] = DEAD;
puts("Game of life Program");
puts("Enter x, y where x, y is living cell");
printf("0 <= x <= %d, 0 <= y <= %d\n",
MAXROW-1, MAXCOL-1);
puts("Terminate with x, y = -1, -1");
while(1) {
scanf("%d %d", &row, &col);
if(0 <= row && row < MAXROW &&
0 <= col && col < MAXCOL)
map[row][col] = ALIVE;
else if(row == -1 || col == -1)
break;
else
printf("(x, y) exceeds map ranage!");
}
}
int neighbors(int row, int col) {
int count = 0, c, r;
for(r = row-1; r <= row+1; r++)
for(c = col-1; c <= col+1; c++) {
if(r < 0 || r >= MAXROW || c < 0 || c >= MAXCOL)
continue;
if(map[r][c] == ALIVE)
count++;
}
if(map[row][col] == ALIVE)
count--;
return count;
}
void outputMap() {
int row, col;
printf("\n\n%20cGame of life cell status\n");
for(row = 0; row < MAXROW; row++) {
printf("\n%20c", ' ');
for(col = 0; col < MAXCOL; col++)
if(map[row][col] == ALIVE) putchar('#');
else putchar('-');
}
}
void copyMap() {
int row, col;
for(row = 0; row < MAXROW; row++)
for(col = 0; col < MAXCOL; col++)
map[row][col] = newmap[row][col];
}
运行结果
11 🔔字串核对
说明
今日的一些高阶程式语言对于字串的处理支援越来越强大(例如Java、Perl等),不过字串搜寻本身仍是个值得探讨的课题,在这边以Boyer- Moore法来说明如何进行字串说明,这个方法快且原理简洁易懂。
解法
字串搜寻本身不难,使用暴力法也可以求解,但如何快速搜寻字串就不简单了,传统的字串搜寻是从关键字与字串的开头开始比对,例如 Knuth-Morris-Pratt 演算法 字串搜寻,这个方法也不错,不过要花时间在公式计算上;Boyer-Moore字串核对改由关键字的后面开始核对字串,并制作前进表,如果比对不符合则依前进表中的值前进至下一个核对处,假设是p好了,然后比对字串中p-n+1至p的值是否与关键字相同。
如果关键字中有重复出现的字元,则前进值就会有两个以上的值,此时则取前进值较小的值,如此就不会跳过可能的位置,例如texture这个关键字,t的前进值应该取后面的3而不是取前面的 7。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void table(char*); // 建立前进表
int search(int, char*, char*); // 搜寻关键字
void substring(char*, char*, int, int); // 取出子字串
int skip[256];
int main(void) {
char str_input[80];
char str_key[80];
char tmp[80] = {'\0'};
int m, n, p;
printf("请输入字串:");
gets(str_input);
printf("请输入搜寻关键字:");
gets(str_key);
m = strlen(str_input); // 计算字串长度
n = strlen(str_key);
table(str_key);
p = search(n-1,str_input,str_key);
while(p != -1) {
substring(str_input, tmp, p, m);
printf("%s\n", tmp);
p = search(p+n+1,str_input,str_key);
}
printf("\n");
return 0;
}
void table(char *key) {
int k, n;
n = strlen(key);
for(k = 0; k <= 255; k++)
skip[k] = n;
for(k = 0; k < n - 1; k++)
skip[key[k]] = n - k - 1;
}
int search(int p, char* input, char* key) {
int i, m, n;
char tmp[80] = {'\0'};
m = strlen(input);
n = strlen(key);
while(p < m) {
substring(input, tmp, p-n+1, p);
if(!strcmp(tmp, key)) // 比较两字串是否相同
return p-n+1;
p += skip[input[p]];
}
return -1;
}
void substring(char *text, char* tmp, int s, int e) {
int i, j;
for(i = s, j = 0; i <= e; i++, j++)
tmp[j] = text[i];
tmp[j] = '\0';
}
运行结果
12 💝双色、三色河内塔
说明
接下来最底两层的就不用管它们了,因为它们已经就定位,只要再处理第一柱上面的三个盘子
就可以了。
双色河内塔 C 实作
#include <stdio.h>
void hanoi(int disks, char source, char temp, char target) {
if (disks == 1) {
printf("move disk from %c to %c\n",source, target);
printf("move disk from %c to %c\n",source, target);
} else {
hanoi(disks-1,source, target, temp);
hanoi(1,source, temp, target);
hanoi(disks-1, temp, source, target);
}
}
void hanoi2colors(int disks) {
char source = 'A';
char temp = 'B';
char target = 'C';
int i;
for(i = disks / 2; i > 1; i--) {
hanoi(i-1, source, temp, target);
printf("move disk from %c to %c\n",source, temp);
printf("move disk from %c to %c\n",source, temp);
hanoi(i-1, target, temp, source);
printf("move disk from %c to %c\n", temp, target);
}
printf("move disk from %c to %c\n",source, temp);
printf("move disk from %c to %c\n",source, target);
}
int main() {
int n;
printf("请输入盘数:");
scanf("%d", &n);
hanoi2colors(n);
return 0;
}
运行结果
三色河内塔 C 实作
#include <stdio.h>
void hanoi(int disks, char source, char temp, char target) {
if (disks == 1) {
printf("move disk from %c to %c\n",source, target);
printf("move disk from %c to %c\n",source, target);
printf("move disk from %c to %c\n",source, target);
} else {
hanoi(disks-1,source, target, temp);
hanoi(1,source, temp, target);
hanoi(disks-1, temp, source, target);
}
}
void hanoi3colors(int disks) {
char source = 'A';
char temp = 'B';
char target = 'C';
int i;
if(disks == 3) {
printf("move disk from %c to %c\n",source, temp);
printf("move disk from %c to %c\n",source, temp);
printf("move disk from %c to %c\n",source, target);
printf("move disk from %c to %c\n", temp, target);
printf("move disk from %c to %c\n", temp, source);
printf("move disk from %c to %c\n", target, temp);;
}
else {
hanoi(disks/3-1,source, temp, target);
printf("move disk from %c to %c\n",source, temp);
printf("move disk from %c to %c\n",source, temp);
printf("move disk from %c to %c\n",source, temp);
hanoi(disks/3-1, target, temp, source);
printf("move disk from %c to %c\n", temp, target);
printf("move disk from %c to %c\n", temp, target);
printf("move disk from %c to %c\n", temp, target);
hanoi(disks/3-1,source, target, temp);
printf("move disk from %c to %c\n", target,source);
printf("move disk from %c to %c\n", target,source);
hanoi(disks/3-1, temp, source, target);
printf("move disk from %c to %c\n",source, temp);
for (i = disks / 3 - 1; i > 0; i--) {
if (i>1) {
hanoi(i-1, target,source, temp);
}
printf("move disk from %c to %c\n",target,source);
printf("move disk from %c to %c\n",target,source);
if (i>1) {
hanoi(i-1, temp, source, target);
}
printf("move disk from %c to %c\n",source, temp);
}
}
}
int main() {
int n;
printf("请输入盘数:");
scanf("%d", &n);
hanoi3colors(n);
return 0;
}
运行结果
13 🐑背包问题(Knapsack Problem)
说明
放入李子
放入苹果
放入橘子
放入草莓
放入甜瓜
由最后一个表格,可以得知在背包负重8公斤时,最多可以装入9050元的水果,而最后一个装入 的 水果是3号,也就是草莓,装入了草莓,背包只能再放入7公斤(8-1)的水果,所以必须看背包负重7公斤时的最佳解,最后一个放入的是2号,也就 是橘子,现在背包剩下负重量5公斤(7-2),所以看负重5公斤的最佳解,最后放入的是1号,也就是苹果,此时背包负重量剩下0公斤(5-5),无法 再放入水果,所以求出最佳解为放入草莓、橘子与苹果,而总价为9050元。
#include <stdio.h>
#include <stdlib.h>
#define LIMIT 8// 重量限制
#define N 5// 物品种类
#define MIN 1// 最小重量
struct body {
char name[20];
int size;
int price;
};
typedef struct body object;
int main(void) {
int item[LIMIT+1] = {0};
int value[LIMIT+1] = {0};
int newvalue, i, s, p;
object a[] = {{"李子", 4, 4500},
{"苹果", 5, 5700},
{"橘子", 2, 2250},
{"草莓", 1, 1100},
{"甜瓜", 6, 6700}};
for(i = 0; i < N; i++) {
for(s = a[i].size; s <= LIMIT;s++) { p = s - a[i].size;
newvalue = value[p] + a[i].price;
if(newvalue > value[s]) {// 找到阶段最佳解
value[s] = newvalue;
item[s] = i;
} } }
printf("物品\t价格\n");
for(i = LIMIT; i >= MIN; i = i - a[item[i]].size) {
printf("%s\t%d\n",
a[item[i]].name, a[item[i]].price);
}
printf("合计\t%d\n", value[LIMIT]);
return 0;
}
运行结果
14 🐮蒙地卡罗法求 PI
说明
蒙地卡罗为摩洛哥王国之首都,该国位于法国与义大利国境,以赌博闻名。蒙地卡罗的基本原理为以乱数配合面积公式来进行解题,这种以机率来解题的方式带有赌博的意味,虽然在精确度上有所疑虑,但其解题的思考方向却是个值得学习的方式。
解法
蒙地卡罗的解法适用于与面积有关的题目,例如求PI值或椭圆面积,这边介绍如何求PI值;假设有一个圆半径为1,所以四分之一圆面积就为PI,而包括此四分之一圆的正方形面积就 为1,如下图所示:
如果随意的在正方形中投射飞标(点)好了,则这些飞标(点)有些会落于四分之一圆内,假设所投射的飞标(点)有n点,在圆内的飞标(点)有c点,则依比例来算,就会得到上图中最后的公式。
至于如何判断所产生的点落于圆内,很简单,令乱数产生X与Y两个数值,如果X
2+Y
2等于1就是落在圆内。
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 50000
int main(void) {
int i, sum = 0;
double x, y;
srand(time(NULL));
for(i = 1; i < N; i++) { x = (double) rand() / RAND_MAX;
y = (double) rand() / RAND_MAX;
if((x * x + y * y) < 1)
sum++;
}
printf("PI = %f\n", (double) 4 * sum / N);
return 0;
}
运行结果
15 🐱筛选求质数
说明
除了自身之外,无法被其它整数整除的数称之为质数,要求质数很简单,但如何快速的求出质数则一直是程式设计人员与数学家努力的课题,在这边介绍一个着名的 Eratosthenes求质数方法。
解法
首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数?
首先假设要检查的数是N好了,则事实上只要检查至N的开根号就可以了,道理很简单,假设AB = N,如果A大于N的开根号,则事实上在小于A之前的检查就可以先检查到B这个数可以整 除N。不过在程式中使用开根号会精确度的问题,所以可以使用 ii <= N进行检查,且执行更快 。
再来假设有一个筛子存放1~N,例如:
先将2的倍数筛去:
再将3的倍数筛去:
再来将5的倍数筛去,再来将7的质数筛去,再来将11的倍数筛去…,如此进行到最后留下的数就都是质数,这就是Eratosthenes筛选方法(Eratosthenes Sieve Method)。
检查的次数还可以再减少,事实上,只要检查6n+1与6n+5就可以了,也就是直接跳过2与3的倍数,使得程式中的if的检查动作可以减少。
#include <stdio.h>
#include <stdlib.h>
#define N 1000
int main(void) {
int i, j;
int prime[N+1];
for(i = 2; i <= N; i++)
prime[i] = 1;
for(i = 2; i*i <= N; i++) { // 这边可以改进
if(prime[i] == 1) {
for(j = 2*i; j <= N; j++) {
if(j % i == 0)
prime[j] = 0;
} } }
for(i = 2; i < N; i++) {
if(prime[i] == 1) {
printf("%4d ", i);
if(i % 16 == 0)
printf("\n");
} }
printf("\n");
return 0;
}
运行结果