题目:http://codeforces.com/problemset/problem/498/C
题意:给定一个长度为n的数组,有m对(i, j),i + j一定为奇数,意味着可以从数组中拿出第i个数和第j个数,然后除以它们的公约数(大于1),再放回数组中,持续这样操作,问最多可以操作多少次
思路:i + j一定为质数,可以二分偶数奇数建图。想要操作最多,那么肯定每次除以他们的质因子,因为数据范围为1e9,所以枚举质数到1e5,对于当前枚举的质因子,从每个数中除掉当前质因子,统计每个数中有几个,然后从源点向奇数点两边,容量为这个数含有当前质因子的数量,从偶数点向汇点连边,容量为这个数含有当前质因子的数量, 然后奇数点向偶数点连边,容量为两者质因子数量的较小值。最后剩下不为1的数,肯定为大于1e5的质数,对于两个大质数只有相等才能进行一次操作,连边容量为1,分别和源点汇点连边容量为1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define debug() puts("here")
using namespace std;
const int N = 110, M = 100100;
const int INF = 0x3f3f3f3f;
struct edge
{
int to, cap, next;
} g[N*N*2];
int cnt, nv, head[N], level[N], gap[N], cur[N], pre[N], arr[M];
int prime[M], k, x[N], y[N], a[N];
int cas;
void add_edge(int v, int u, int cap)
{
g[cnt].to = u, g[cnt].cap = cap, g[cnt].next = head[v], head[v] = cnt++;
g[cnt].to = v, g[cnt].cap = 0, g[cnt].next = head[u], head[u] = cnt++;
}
int sap(int s, int t)
{
memset(level, 0, sizeof level);
memset(gap, 0, sizeof gap);
memcpy(cur, head, sizeof head);
gap[0] = nv;
int v = pre[s] = s, flow = 0, aug = INF;
while(level[s] < nv)
{
bool flag = false;
for(int &i = cur[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(g[i].cap > 0 && level[v] == level[u] + 1)
{
flag = true;
pre[u] = v;
v = u;
aug = min(aug, g[i].cap);
if(v == t)
{
flow += aug;
while(v != s)
{
v = pre[v];
g[cur[v]].cap -= aug;
g[cur[v]^1].cap += aug;
}
aug = INF;
}
break;
}
}
if(flag) continue;
int minlevel = nv;
for(int i = head[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(g[i].cap > 0 && minlevel > level[u])
minlevel = level[u], cur[v] = i;
}
if(--gap[level[v]] == 0) break;
level[v] = minlevel + 1;
gap[level[v]]++;
v = pre[v];
}
return flow;
}
void table()
{
k = 0;
for(int i = 2; i < M; i++)
if(! arr[i])
{
prime[++k] = i;
for(int j = i * 2; j < M; j += i)
arr[j] = 1;
}
}
bool jud(int val)
{
if(val >= M) return true;
else return false;
}
int main()
{
table();
int n, m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &x[i], &y[i]);
if(y[i] & 1) swap(x[i], y[i]);
}
int ss = 0, tt = n + 1, res = 0;
for(int i = 1; i <= k; i++)
{
int num[N];
memset(num, 0, sizeof num);
for(int j = 1; j <= n; j++)
while(a[j] % prime[i] == 0)
{
num[j]++, a[j] /= prime[i];
}
cnt = 0;
memset(head, -1, sizeof head);
for(int j = 1; j <= n; j += 2) add_edge(ss, j, num[j]);
for(int j = 2; j <= n; j += 2) add_edge(j, tt, num[j]);
for(int j = 1; j <= m; j++) add_edge(x[j], y[j], min(num[x[j]], num[y[j]]));
nv = tt + 1;
res += sap(ss, tt);
}
cnt = 0;
memset(head, -1, sizeof head);
for(int i = 1; i <= n; i += 2)
if(jud(a[i])) add_edge(ss, i, 1);
for(int i = 2; i <= n; i += 2)
if(jud(a[i])) add_edge(i, tt, 1);
for(int i = 1; i <= m; i++)
if(jud(a[i]) && a[x[i]] == a[y[i]]) add_edge(x[i], y[i], 1);
nv = tt + 1;
res += sap(ss, tt);
printf("%d\n", res);
return 0;
}