写在前面
- 思路分析
- 给出1棵2叉搜索树前序遍历,求结点u和v的最近共同祖先
-
map<int, bool> mp
标记树中所有出现过的结点,遍历1遍pre数组,将当前结点标记为a
- 如果u和v分别在a的左、右,或者u、 v其中1个就是当前a,即
(a >= u && a <= v) || (a >= v && a <= u)
,
说明找到共同最低祖先a,退出当前循环
- 根据要求输出结果
- 学习ing
测试用例
input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
ac代码
#include <iostream>
#include <vector>
#include <map>
using namespace std;
map<int, bool> mp;
int main()
{
int m, n, u, v, a;
scanf("%d %d", &m,&n);
vector<int> pre(n);
for(int i=0; i<n; i++)
{
scanf("%d", &pre[i]);
mp[pre[i]] = true;
}
for(int i=0; i<m; i++)
{
scanf("%d %d", &u, &v);
for(int j=0; j<n; j++)
{
a = pre[j];
// BST特点,最近公共祖先
if((a>=u && a<=v) || (a>=v && a<=u)) break;
}
if(mp[u] == false && mp[v] == false)
printf("ERROR: %d and %d are not found.\n", u, v);
else if (mp[u] == false || mp[v] == false)
printf("ERROR: %d is not found.\n", mp[u] == false ? u : v);
else if (a == u || a == v)
printf("%d is an ancestor of %d.\n", a, a == u ? v : u);
else
printf("LCA of %d and %d is %d.\n", u, v, a);
}
return 0;
}
知识点小结
- LCA(
Least Common Ancestors
)特点:
- 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。
- A1151 VS A1143
- BST(
Binary Search Tree
)特点:
- 每个节点的值大于其任意左侧子节点的值,小于其任意右节点的值
- 二叉搜索树的中序遍历是将结点排序后的顺序
- 二叉搜索树的性质是左边的比a小,右边的比a大,此时说明a是左右子树的祖先,但不一定是最近
- 根节点最左边的值,树中最小值
- 根节点最右边的值,树中最大值
- 二叉查找树(Binary Search Tree)增删改查