文章目录
- Flink 系列文章
- 一、maven依赖及数据结构
- 1、maven依赖
- 2、数据结构
- 3、数据源
- 4、验证结果
- 二、维表来源于初始化的静态数据
- 1、说明
- 2、示例:将事实流与维表进行关联
- 三、维表来源于第三方数据源
- 1、说明
- 2、示例:将事实流与维表进行关联-通过缓存降低性能开销
- 3、示例:将事实流与维表进行关联-通过Flink 的异步 I/O提高系统效率
- 1)、redis 异步I/O实现
- 2)、实现事实流与维度流join
- 四、通过广播将维表数据传递到下游
- 1、说明
- 2、示例:将事实流与维表进行关联-通过Flink 的Broadcast
- 1)、广播实现
- 2)、实现事实流与维度流join
- 五、通过Temporal table实现维表数据join
- 1、说明
- 2、示例:将事实流与维表进行关联-ProcessingTime实现
- 3、示例:将事实流与维表进行关联-EventTime实现
- 4、示例:将事实流与维表进行关联-Kafka Source的EventTime实现
- 1)、bean定义
- 2)、序列化定义
- 3)、实现
本文详细的介绍了Flink的维表join的6种方式,即静态数据、缓存、异步I/O、广播、时态表的3种方式。
本文除了maven依赖外,没有其他依赖。
本文的示例中依赖环境有redis、kafka、netcat等。
一、maven依赖及数据结构
1、maven依赖
本文的所有示例均依赖本部分的pom.xml内容,可能针对下文中的某些示例存在过多的引入,根据自己的情况进行删减。
<properties>
<encoding>UTF-8</encoding>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<java.version>1.8</java.version>
<scala.version>2.12</scala.version>
<flink.version>1.17.0</flink.version>
</properties>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-csv</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-json</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.12</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-uber</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-runtime</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc</artifactId>
<version>3.1.0-1.17</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>32.0.1-jre</version>
</dependency>
<!-- flink连接器 -->
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-sql-connector-kafka</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-compress</artifactId>
<version>1.24.0</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.2</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.12</artifactId>
<version>1.1.0</version>
<exclusions>
<exclusion>
<artifactId>flink-streaming-java_2.12</artifactId>
<groupId>org.apache.flink</groupId>
</exclusion>
<exclusion>
<artifactId>flink-runtime_2.12</artifactId>
<groupId>org.apache.flink</groupId>
</exclusion>
<exclusion>
<artifactId>flink-core</artifactId>
<groupId>org.apache.flink</groupId>
</exclusion>
<exclusion>
<artifactId>flink-java</artifactId>
<groupId>org.apache.flink</groupId>
</exclusion>
<exclusion>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge_2.12</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.12</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>2.0.43</version>
</dependency>
</dependencies>
2、数据结构
本示例仅仅为实现需求:将订单中uId与用户id进行关联,然后输出Tuple2<Order, String>。
- 事实流 order
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class Order {
private Integer id;
private Integer uId;
private Double total;
}
- 维度流 user
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
}
3、数据源
事实流数据有几种,具体见示例部分,比如socket、redis、kafka等
维度表流有几种,具体见示例部分,比如静态数据、mysql、socket、kafka等。
如此,实现本文中的示例就需要准备好相应的环境,即mysql、redis、kafka、netcat等。
4、验证结果
本文提供的所有示例均为验证通过的示例,测试的数据均在每个示例中,分为事实流、维度流和运行结果进行注释,在具体的示例中关于验证不再赘述。
二、维表来源于初始化的静态数据
1、说明
通过定义一个类实现RichMapFunction,在open()中读取维表数据加载到内存中,在事实流map()方法中与维表数据进行关联。
由于数据存储于内存中,所以只适合小数据量并且维表数据更新频率不高的情况下使用。虽然可以在open中定义一个定时器定时更新维表,但是还是存在维表更新不及时的情况或资源开销较大的情况。一般如果数据量较小且不大会变(或变化影响也不大)的情况下,理想选择之一。
2、示例:将事实流与维表进行关联
import java.util.HashMap;
import java.util.Map;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description: 采用在RichMapfunction类的open方法中将维表数据加载到内存
*/
public class TestJoinDimFromStaticDataDemo {
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
}
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class Order {
private Integer id;
private Integer uId;
private Double total;
}
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// order 事实流
DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
.map(o -> {
String[] lines = o.split(",");
return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
});
DataStream<Tuple2<Order, String>> result = orderDs.map(new RichMapFunction<Order, Tuple2<Order, String>>() {
Map<Integer, User> userDim = null;
// 维表-静态数据,本处使用的是匿名内部类实现的
@Override
public void open(Configuration parameters) throws Exception {
userDim = new HashMap<>();
userDim.put(1001, new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com"));
userDim.put(1002, new User(1002, "alanchan", 22d, 20, "alan.chan.chn@163.com"));
userDim.put(1003, new User(1003, "alanchanchn", 23d, 22, "alan.chan.chn@163.com"));
userDim.put(1004, new User(1004, "alan_chan", 21d, 19, "alan.chan.chn@163.com"));
userDim.put(1005, new User(1005, "alan_chan_chn", 23d, 21, "alan.chan.chn@163.com"));
}
@Override
public Tuple2<Order, String> map(Order value) throws Exception {
return new Tuple2(value, userDim.get(value.getUId()).getName());
}
});
result.print();
// nc 输入
// 1,1004,345
// 2,1001,678
// 控制台输出
// 2> (TestJoinDimFromStaticData.Order(id=1, uId=1004, total=345.0),alan_chan)
// 3> (TestJoinDimFromStaticData.Order(id=2, uId=1001, total=678.0),alan)
env.execute("TestJoinDimFromStaticData");
}
}
三、维表来源于第三方数据源
1、说明
这种方式是将维表数据存储在Redis、HBase、MySQL等外部存储中,事实流在关联维表数据的时候实时去外部存储中查询。
由于维度数据量不受内存限制,可以存储很大的数据量。同时维表数据来源于第三方数据源,读取速度受制于外部存储的读取速度。一般常见的做法该种方式较多。
2、示例:将事实流与维表进行关联-通过缓存降低性能开销
如果频繁的访问第三方数据源进行join,会带来很大的开销,为降低该种情况的开销,一般使用cache来减轻访问压力,但该种方式存在数据同步的不一致或延迟情况。如果使用缓存,则会存在将数据存在内存中,也会增加系统开销。该种情况的实际应用以具体的业务场景而定。本示例使用的是guava Cache,缓存的实现有很多种方式,具体以自己的实际情况进行选择。
本示例的数据源仅仅以静态的数据进行展示,实际上可能数据来源于Hbase、mysql等。
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import com.google.common.cache.RemovalListener;
import com.google.common.cache.RemovalNotification;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
public class TestJoinDimFromCacheDataDemo {
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
}
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class Order {
private Integer id;
private Integer uId;
private Double total;
}
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// order 实时流
DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
.map(o -> {
String[] lines = o.split(",");
return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
});
// user 维表
DataStream<Tuple2<Order, String>> result = orderDs.map(new RichMapFunction<Order, Tuple2<Order, String>>() {
// 缓存接口这里是LoadingCache,LoadingCache在缓存项不存在时可以自动加载缓存
LoadingCache<Integer, User> userDim;
@Override
public void open(Configuration parameters) throws Exception {
// 使用google LoadingCache来进行缓存
// CacheBuilder的构造函数是私有的,只能通过其静态方法newBuilder()来获得CacheBuilder的实例
userDim = CacheBuilder.newBuilder()
// 设置并发级别为8,并发级别是指可以同时写缓存的线程数
.concurrencyLevel(8)
// 最多缓存个数,超过了就根据最近最少使用算法来移除缓存
.maximumSize(1000)
// 设置写缓存后10分钟过期
.expireAfterWrite(10, TimeUnit.MINUTES)
// 设置缓存容器的初始容量为10
.initialCapacity(10)
// 设置要统计缓存的命中率
.recordStats()
// 指定移除通知
.removalListener(new RemovalListener<Integer, User>() {
@Override
public void onRemoval(RemovalNotification<Integer, User> removalNotification) {
System.out.println(removalNotification.getKey() + "被移除了,值为:" + removalNotification.getValue());
}
})
.build(
// 指定加载缓存的逻辑
new CacheLoader<Integer, User>() {
@Override
public User load(Integer uId) throws Exception {
return dataSource(uId);
}
});
System.out.println("userDim:" + userDim.get(1002));
}
private User dataSource(Integer uId) {
// 可以是任何数据源,本处仅仅示例
Map<Integer, User> users = new HashMap<>();
users.put(1001, new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com"));
users.put(1002, new User(1002, "alanchan", 22d, 20, "alan.chan.chn@163.com"));
users.put(1003, new User(1003, "alanchanchn", 23d, 22, "alan.chan.chn@163.com"));
users.put(1004, new User(1004, "alan_chan", 21d, 19, "alan.chan.chn@163.com"));
users.put(1005, new User(1005, "alan_chan_chn", 23d, 21, "alan.chan.chn@163.com"));
User user = null;
if (users.containsKey(uId)) {
user = users.get(uId);
}
return user;
}
@Override
public Tuple2<Order, String> map(Order value) throws Exception {
return new Tuple2(value, userDim.get(value.getUId()).getName());
}
});
result.print();
// 输入数据
// 7,1003,111
// 8,1005,234
// 9,1002,875
// 控制台输出数据
// 5> (TestJoinDimFromCacheDataDemo.Order(id=7, uId=1003, total=111.0),alanchanchn)
// 6> (TestJoinDimFromCacheDataDemo.Order(id=8, uId=1005, total=234.0),alan_chan_chn)
// 7> (TestJoinDimFromCacheDataDemo.Order(id=9, uId=1002, total=875.0),alanchan)
env.execute("TestJoinDimFromCacheDataDemo");
}
}
3、示例:将事实流与维表进行关联-通过Flink 的异步 I/O提高系统效率
Flink与外部存储系统进行读写操作的时候可以使用同步方式,也就是发送一个请求后等待外部系统响应,然后再发送第二个读写请求,这样的方式吞吐量比较低,可以用提高并行度的方式来提高吞吐量,但是并行度多了也就导致了进程数量多了,占用了大量的资源。
Flink中可以使用异步IO来读写外部系统,这要求外部系统客户端支持异步IO,比如redis、MongoDB等。
更多内容见文章:
55、Flink之用于外部数据访问的异步 I/O介绍及示例
1)、redis 异步I/O实现
package org.tablesql.join;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CompletableFuture;
import java.util.function.Supplier;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import org.tablesql.join.TestJoinDimFromAsyncDataStreamDemo.Order;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
public class JoinAyncFunctionByRedis extends RichAsyncFunction<Order, Tuple2<Order, String>> {
private JedisPoolConfig config = null;
private static String ADDR = "192.168.10.41";
private static int PORT = 6379;
private static int TIMEOUT = 10000;
private JedisPool jedisPool = null;
private Jedis jedis = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
config = new JedisPoolConfig();
jedisPool = new JedisPool(config, ADDR, PORT, TIMEOUT);
jedis = jedisPool.getResource();
}
@Override
public void asyncInvoke(Order input, ResultFuture<Tuple2<Order, String>> resultFuture) throws Exception {
// order 实时流中的单行数据
System.out.println("输入参数input----:" + input);
// 发起一个异步请求,返回结果
CompletableFuture.supplyAsync(new Supplier<String>() {
@Override
public String get() {
// 数据格式:1002,alanchan,19,25,alan.chan.chn@163.com
String userLine = jedis.hget("AsyncReadUserById_Redis", input.getUId() + "");
String[] userTemp = userLine.split(",");
// 返回 用户名
return userTemp[1];
}
}).thenAccept((String dbResult) -> {
// 设置请求完成时的回调,将结果返回
List list = new ArrayList<Tuple2<Order, String>>();
list.add(new Tuple2<>(input, dbResult));
resultFuture.complete(list);
});
}
// 连接超时的时候调用的方法
public void timeout(Order input, ResultFuture<Tuple2<Order, String>> resultFuture)
throws Exception {
List list = new ArrayList<Tuple2<Order, String>>();
// 数据源超时,不能获取到维表信息,置为"
list.add(new Tuple2<>(input, ""));
resultFuture.complete(list);
}
@Override
public void close() throws Exception {
super.close();
if (jedis.isConnected()) {
jedis.close();
}
}
}
2)、实现事实流与维度流join
package org.tablesql.join;
import java.util.concurrent.TimeUnit;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.AsyncDataStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
public class TestJoinDimFromAsyncDataStreamDemo {
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
}
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class Order {
private Integer id;
private Integer uId;
private Double total;
}
public static void main(String[] args) throws Exception {
testJoinAyncFunctionByRedis();
}
static void testJoinAyncFunctionByRedis() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// order 实时流
DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
.map(o -> {
String[] lines = o.split(",");
return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
});
// 保证顺序:异步返回的结果保证顺序,超时时间1秒,最大容量2,超出容量触发反压
DataStream<Tuple2<Order, String>> result = AsyncDataStream.orderedWait(orderDs, new JoinAyncFunctionByRedis(),
1000L, TimeUnit.MILLISECONDS, 2);
result.print("result:");
// 允许乱序:异步返回的结果允许乱序,超时时间1秒,最大容量2,超出容量触发反压
DataStream<Tuple2<Order, String>> unorderedResult = AsyncDataStream
.unorderedWait(orderDs, new JoinAyncFunctionByRedis(), 1000L, TimeUnit.MILLISECONDS, 2)
.setParallelism(1);
unorderedResult.print("unorderedResult");
// redis的操作命令及数据
// 127.0.0.1:6379> hset AsyncReadUserById_Redis 1001 '1001,alan,18,20,alan.chan.chn@163.com'
// (integer) 1
// 127.0.0.1:6379> hset AsyncReadUserById_Redis 1002 '1002,alanchan,19,25,alan.chan.chn@163.com'
// (integer) 1
// 127.0.0.1:6379> hset AsyncReadUserById_Redis 1003 '1003,alanchanchn,20,30,alan.chan.chn@163.com'
// (integer) 1
// 127.0.0.1:6379> hset AsyncReadUserById_Redis 1004 '1004,alan_chan,27,20,alan.chan.chn@163.com'
// (integer) 1
// 127.0.0.1:6379> hset AsyncReadUserById_Redis 1005 '1005,alan_chan_chn,36,10,alan.chan.chn@163.com'
// (integer) 1
// 127.0.0.1:6379> hgetall AsyncReadUserById_Redis
// 1) "1001"
// 2) "1001,alan,18,20,alan.chan.chn@163.com"
// 3) "1002"
// 4) "1002,alanchan,19,25,alan.chan.chn@163.com"
// 5) "1003"
// 6) "1003,alanchanchn,20,30,alan.chan.chn@163.com"
// 7) "1004"
// 8) "1004,alan_chan,27,20,alan.chan.chn@163.com"
// 9) "1005"
// 10) "1005,alan_chan_chn,36,10,alan.chan.chn@163.com"
// 输入数据
// 13,1002,811
// 14,1004,834
// 15,1005,975
// 控制台输出数据
// 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0)
// result::12> (TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0),1002,alanchan,19,25,alan.chan.chn@163.com)
// 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0)
// unorderedResult:9> (TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0),1002,alanchan,19,25,alan.chan.chn@163.com)
// result::5> (TestJoinDimFromAsyncDataStreamDemo.Order(id=14, uId=1004, total=834.0),alan_chan)
// 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=14, uId=1004, total=834.0)
// unorderedResult:2> (TestJoinDimFromAsyncDataStreamDemo.Order(id=14, uId=1004, total=834.0),alan_chan)
// 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0)
// result::6> (TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0),alan_chan_chn)
// 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0)
// unorderedResult:3> (TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0),alan_chan_chn)
env.execute("TestJoinDimFromAsyncDataStreamDemo");
}
}
四、通过广播将维表数据传递到下游
1、说明
利用Flink的Broadcast State将维表数据流广播到下游做join操作。该种方式实现比较方便,完全满足需求,美中不足的是需要充分利用系统的内存,也就是将数据存储在内容中。
更多内容见文章:
53、Flink 的Broadcast State 模式介绍及示例
2、示例:将事实流与维表进行关联-通过Flink 的Broadcast
1)、广播实现
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
package org.tablesql.join;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.Order;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.User;
// final BroadcastProcessFunction<IN1, IN2, OUT> function)
public class JoinBroadcastProcessFunctionImpl extends BroadcastProcessFunction<Order, User, Tuple2<Order, String>> {
// 用于存储规则名称与规则本身的 map 存储结构
MapStateDescriptor<Integer, User> broadcastDesc;
JoinBroadcastProcessFunctionImpl(MapStateDescriptor<Integer, User> broadcastDesc) {
this.broadcastDesc = broadcastDesc;
}
// 负责处理广播流的元素
@Override
public void processBroadcastElement(User value,
BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.Context ctx,
Collector<Tuple2<Order, String>> out) throws Exception {
System.out.println("收到广播数据:" + value);
// 得到广播流的存储状态
ctx.getBroadcastState(broadcastDesc).put(value.getId(), value);
}
// 处理非广播流,关联维度
@Override
public void processElement(Order value,
BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.ReadOnlyContext ctx,
Collector<Tuple2<Order, String>> out) throws Exception {
// 得到广播流的存储状态
ReadOnlyBroadcastState<Integer, User> state = ctx.getBroadcastState(broadcastDesc);
out.collect(new Tuple2<>(value, state.get(value.getUId()).getName()));
}
}
2)、实现事实流与维度流join
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
package org.tablesql.join;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
public class TestJoinDimFromBroadcastDataStreamDemo {
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
}
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
static class Order {
private Integer id;
private Integer uId;
private Double total;
}
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// order 实时流
DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
.map(o -> {
String[] lines = o.split(",");
return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
});
// user 实时流
DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888)
.map(o -> {
String[] lines = o.split(",");
return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4]);
}).setParallelism(1);
// 一个 map descriptor,它描述了用于存储规则名称与规则本身的 map 存储结构
// MapStateDescriptor<String, Rule> ruleStateDescriptor = new MapStateDescriptor<>(
// "RulesBroadcastState",
// BasicTypeInfo.STRING_TYPE_INFO,
// TypeInformation.of(new TypeHint<Rule>() {
// }));
// 广播流,广播规则并且创建 broadcast state
// BroadcastStream<Rule> ruleBroadcastStream = ruleStream.broadcast(ruleStateDescriptor);
// 将user流(维表)定义为广播流
final MapStateDescriptor<Integer, User> broadcastDesc = new MapStateDescriptor("Alan_RulesBroadcastState",
Integer.class,
User.class);
BroadcastStream<User> broadcastStream = userDs.broadcast(broadcastDesc);
// 需要由非广播流来进行调用
DataStream result = orderDs.connect(broadcastStream)
.process(new JoinBroadcastProcessFunctionImpl(broadcastDesc));
result.print();
// user 流数据(维度表),由于未做容错处理,需要先广播维度数据,否则会出现空指针异常
// 1001,alan,18,20,alan.chan.chn@163.com
// 1002,alanchan,19,25,alan.chan.chn@163.com
// 1003,alanchanchn,20,30,alan.chan.chn@163.com
// 1004,alan_chan,27,20,alan.chan.chn@163.com
// 1005,alan_chan_chn,36,10,alan.chan.chn@163.com
// order 流数据
// 16,1002,211
// 17,1004,234
// 18,1005,175
// 控制台输出
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)
// ......
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)
// ......
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)
// ......
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)
// ......
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)
// ......
// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)
// 7> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=16, uId=1002, total=211.0),alanchan)
// 8> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=17, uId=1004, total=234.0),alan_chan)
// 9> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=18, uId=1005, total=175.0),alan_chan_chn)
env.execute();
}
}
五、通过Temporal table实现维表数据join
1、说明
Temporal table是持续变化表上某一时刻的视图,Temporal table function是一个表函数,传递一个时间参数,返回Temporal table这一指定时刻的视图。可以将维度数据流映射为Temporal table,事实流与这个Temporal table进行join,可以关联到某一个版本视图的维度数据。
该种方式维度数据量可以很大,维表数据实时更新,不依赖于第三方存储,并且提供不同版本的维表数据(应对维表信息更新)。截至版本Flink 1.17该种方式只能在Flink SQL API中使用。
关于时间参数,flink有三个时间,即eventtime、processingtime和injectiontime,常用的是eventtime和processingtime,本文介绍其实现方式。关于eventtime的实现,kafka与其他的数据源还有不同,本文单独介绍一下kafka的实现方式。
2、示例:将事实流与维表进行关联-ProcessingTime实现
package org.tablesql.join;
import static org.apache.flink.table.api.Expressions.$;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description: 基于处理时间的时态表
*/
public class TestJoinDimByProcessingTimeDemo {
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
}
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class Order {
private Integer id;
private Integer uId;
private Double total;
}
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// order 实时流 事实表
DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
.map(o -> {
String[] lines = o.split(",");
return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
});
// user 实时流 维度表
DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888)
.map(o -> {
String[] lines = o.split(",");
return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]),
Integer.valueOf(lines[3]), lines[4]);
}).setParallelism(1);
// 转变为Table
Table orderTable = tenv.fromDataStream(orderDs, $("id"), $("uId"), $("total"), $("order_ps").proctime());
Table userTable = tenv.fromDataStream(userDs, $("id"), $("name"), $("balance"), $("age"), $("email"),
$("user_ps").proctime());
// 定义一个TemporalTableFunction
TemporalTableFunction userDim = userTable.createTemporalTableFunction($("user_ps"), $("id"));
// 注册表函数
tenv.registerFunction("alan_userDim", userDim);
// 关联查询
Table result = tenv
.sqlQuery("select o.* , u.name from " + orderTable + " as o , Lateral table (alan_userDim(o.order_ps)) u " +
"where o.uId = u.id");
// 打印输出
DataStream resultDs = tenv.toAppendStream(result, Row.class);
resultDs.print();
// user 流数据(维度表)
// 1001,alan,18,20,alan.chan.chn@163.com
// 1002,alanchan,19,25,alan.chan.chn@163.com
// 1003,alanchanchn,20,30,alan.chan.chn@163.com
// 1004,alan_chan,27,20,alan.chan.chn@163.com
// 1005,alan_chan_chn,36,10,alan.chan.chn@163.com
// order 流数据
// 26,1002,311
// 27,1004,334
// 28,1005,475
// 控制台输出
// 15> +I[26, 1002, 311.0, 2023-12-20T05:21:12.977Z, alanchan]
// 11> +I[27, 1004, 334.0, 2023-12-20T05:21:50.898Z, alan_chan]
// 5> +I[28, 1005, 475.0, 2023-12-20T05:21:57.559Z, alan_chan_chn]
env.execute();
}
}
3、示例:将事实流与维表进行关联-EventTime实现
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
package org.tablesql.join;
import static org.apache.flink.table.api.Expressions.$;
import java.time.Duration;
import java.util.Arrays;
import java.util.List;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
public class TestjoinDimByEventTimeDemo {
// 维表
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class User {
private Integer id;
private String name;
private Double balance;
private Integer age;
private String email;
private Long eventTime;
}
// 事实表
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class Order {
private Integer id;
private Integer uId;
private Double total;
private Long eventTime;
}
final static List<User> userList = Arrays.asList(
new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com", 1L),
new User(1002, "alan", 30d, 19, "alan.chan.chn@163.com", 10L),
new User(1003, "alan", 29d, 25, "alan.chan.chn@163.com", 1L),
new User(1004, "alanchan", 22d, 28, "alan.chan.chn@163.com", 5L),
new User(1005, "alanchan", 50d, 29, "alan.chan.chn@163.com", 1698742362424L));
final static List<Order> orderList = Arrays.asList(
new Order(11, 1002, 1084d, 1L),
new Order(12, 1001, 84d, 10L),
new Order(13, 1005, 369d, 2L));
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// order 实时流 事实表
// DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
// .map(o -> {
// String[] lines = o.split(",");
// return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]), Long.valueOf(lines[3]));
// })
// .assignTimestampsAndWatermarks(WatermarkStrategy
// .<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10))
// .withTimestampAssigner((order, rTimeStamp) -> order.getEventTime()));
DataStream<Order> orderDs = env.fromCollection(orderList)
.assignTimestampsAndWatermarks(WatermarkStrategy
.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10))
.withTimestampAssigner((order, rTimeStamp) -> order.getEventTime()));
// user 实时流 维度表
// DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888)
// .map(o -> {
// String[] lines = o.split(",");
// return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4], Long.valueOf(lines[3]));
// })
// .assignTimestampsAndWatermarks(WatermarkStrategy
// .<User>forBoundedOutOfOrderness(Duration.ofSeconds(10))
// .withTimestampAssigner((user, rTimeStamp) -> user.getEventTime()));
DataStream<User> userDs = env.fromCollection(userList)
.assignTimestampsAndWatermarks(WatermarkStrategy
.<User>forBoundedOutOfOrderness(Duration.ofSeconds(10))
.withTimestampAssigner((user, rTimeStamp) -> user.getEventTime()));
// 转变为Table
Table orderTable = tenv.fromDataStream(orderDs, $("id"), $("uId"), $("total"), $("order_eventTime").rowtime());
Table userTable = tenv.fromDataStream(userDs, $("id"), $("name"), $("balance"), $("age"), $("email"), $("user_eventTime").rowtime());
tenv.createTemporaryView("alan_orderTable", orderTable);
tenv.createTemporaryView("alan_userTable", userTable);
// 定义一个TemporalTableFunction
TemporalTableFunction userDim = userTable.createTemporalTableFunction($("user_eventTime"), $("id"));
// 注册表函数
tenv.registerFunction("alan_userDim", userDim);
// String sql = "select o.* from alan_orderTable as o ";
// String sql = "select u.* from alan_userTable as u ";
// String sql = "select o.*,u.name from alan_orderTable as o , alan_userTable as u where o.uId = u.id";
String sql = "select o.*,u.name from alan_orderTable as o,Lateral table (alan_userDim(o.order_eventTime)) u where o.uId = u.id";
// 关联查询
Table result = tenv.sqlQuery(sql);
// 打印输出
DataStream resultDs = tenv.toAppendStream(result, Row.class);
resultDs.print();
// user 流数据(维度表)
// userList
// order 流数据
// orderList
// 控制台输出
// 3> +I[12, 1001, 84.0, 1970-01-01T00:00:00.010, alan]
env.execute();
}
}
4、示例:将事实流与维表进行关联-Kafka Source的EventTime实现
1)、bean定义
package org.tablesql.join.bean;
import java.io.Serializable;
import lombok.Data;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
@Data
public class CityInfo implements Serializable {
private Integer cityId;
private String cityName;
private Long ts;
}
package org.tablesql.join.bean;
import java.io.Serializable;
import lombok.Data;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
@Data
public class UserInfo implements Serializable {
private String userName;
private Integer cityId;
private Long ts;
}
2)、序列化定义
package org.tablesql.join.bean;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
public class CityInfoSchema implements DeserializationSchema<CityInfo> {
@Override
public CityInfo deserialize(byte[] message) throws IOException {
String jsonStr = new String(message, StandardCharsets.UTF_8);
CityInfo data = JSON.parseObject(jsonStr, new TypeReference<CityInfo>() {});
return data;
}
@Override
public boolean isEndOfStream(CityInfo nextElement) {
return false;
}
@Override
public TypeInformation<CityInfo> getProducedType() {
return TypeInformation.of(new TypeHint<CityInfo>() {
});
}
}
package org.tablesql.join.bean;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
public class UserInfoSchema implements DeserializationSchema<UserInfo> {
@Override
public UserInfo deserialize(byte[] message) throws IOException {
String jsonStr = new String(message, StandardCharsets.UTF_8);
UserInfo data = JSON.parseObject(jsonStr, new TypeReference<UserInfo>() {});
return data;
}
@Override
public boolean isEndOfStream(UserInfo nextElement) {
return false;
}
@Override
public TypeInformation<UserInfo> getProducedType() {
return TypeInformation.of(new TypeHint<UserInfo>() {
});
}
}
3)、实现
/*
* @Author: alanchan
* @LastEditors: alanchan
* @Description:
*/
package org.tablesql.join;
import static org.apache.flink.table.api.Expressions.$;
import java.time.Duration;
import java.util.Properties;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import org.tablesql.join.bean.CityInfo;
import org.tablesql.join.bean.CityInfoSchema;
import org.tablesql.join.bean.UserInfo;
import org.tablesql.join.bean.UserInfoSchema;
public class TestJoinDimByKafkaEventTimeDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// Kafka的ip和要消费的topic,//Kafka设置
Properties props = new Properties();
props.setProperty("bootstrap.servers", "192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092");
props.setProperty("group.id", "kafkatest");
// 读取用户信息Kafka
FlinkKafkaConsumer<UserInfo> userConsumer = new FlinkKafkaConsumer<UserInfo>("user", new UserInfoSchema(),props);
userConsumer.setStartFromEarliest();
userConsumer.assignTimestampsAndWatermarks(WatermarkStrategy
.<UserInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0))
.withTimestampAssigner((user, rTimeStamp) -> user.getTs()) // 该句如果不加,则是默认为kafka的事件时间
);
// 读取城市维度信息Kafka
FlinkKafkaConsumer<CityInfo> cityConsumer = new FlinkKafkaConsumer<CityInfo>("city", new CityInfoSchema(), props);
cityConsumer.setStartFromEarliest();
cityConsumer.assignTimestampsAndWatermarks(WatermarkStrategy
.<CityInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0))
.withTimestampAssigner((city, rTimeStamp) -> city.getTs()) // 该句如果不加,则是默认为kafka的事件时间
);
Table userTable = tableEnv.fromDataStream(env.addSource(userConsumer), $("userName"), $("cityId"), $("ts").rowtime());
Table cityTable = tableEnv.fromDataStream(env.addSource(cityConsumer), $("cityId"), $("cityName"),$("ts").rowtime());
tableEnv.createTemporaryView("userTable", userTable);
tableEnv.createTemporaryView("cityTable", cityTable);
// 定义一个TemporalTableFunction
TemporalTableFunction dimCity = cityTable.createTemporalTableFunction($("ts"), $("cityId"));
// 注册表函数
// tableEnv.registerFunction("dimCity", dimCity);
tableEnv.createTemporarySystemFunction("dimCity", dimCity);
Table u = tableEnv.sqlQuery("select * from userTable");
// u.printSchema();
tableEnv.toAppendStream(u, Row.class).print("user流接收到:");
Table c = tableEnv.sqlQuery("select * from cityTable");
// c.printSchema();
tableEnv.toAppendStream(c, Row.class).print("city流接收到:");
// 关联查询
Table result = tableEnv
.sqlQuery("select u.userName,u.cityId,d.cityName,u.ts " +
"from userTable as u " +
", Lateral table (dimCity(u.ts)) d " +
"where u.cityId=d.cityId");
// 打印输出
DataStream resultDs = tableEnv.toAppendStream(result, Row.class);
resultDs.print("\t关联输出:");
// 用户信息格式:
// {"userName":"user1","cityId":1,"ts":0}
// {"userName":"user1","cityId":1,"ts":1}
// {"userName":"user1","cityId":1,"ts":4}
// {"userName":"user1","cityId":1,"ts":5}
// {"userName":"user1","cityId":1,"ts":7}
// {"userName":"user1","cityId":1,"ts":9}
// {"userName":"user1","cityId":1,"ts":11}
// kafka-console-producer.sh --broker-list server1:9092 --topic user
// 城市维度格式:
// {"cityId":1,"cityName":"nanjing","ts":15}
// {"cityId":1,"cityName":"beijing","ts":1}
// {"cityId":1,"cityName":"shanghai","ts":5}
// {"cityId":1,"cityName":"shanghai","ts":7}
// {"cityId":1,"cityName":"wuhan","ts":10}
// kafka-console-producer.sh --broker-list server1:9092 --topic city
// 输出
// city流接收到::6> +I[1, beijing, 1970-01-01T00:00:00.001]
// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.004]
// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.005]
// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.005]
// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.007]
// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.007]
// city流接收到::6> +I[1, wuhan, 1970-01-01T00:00:00.010]
// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.009]
// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.011]
// 关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.001]
// 关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.004]
// 关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.005]
// 关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.007]
// 关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.009]
env.execute("joinDemo");
}
}
以上,本文详细的介绍了Flink的维表join的6种方式,即静态数据、缓存、异步I/O、广播、时态表的3种方式。