0
点赞
收藏
分享

微信扫一扫

如何清理C盘文件

小时候是个乖乖 2023-11-15 阅读 38

文章大纲


我的职业生涯将近十年,经历丰富。确切来说是广度足够,工作过的公司涵盖,民营小企业,外包,研究所,初创,世界五百强的外企。

而且干过的技术项目也挺广,因此自称个杂家不算过分。但杂家自然对技术变化的嗅觉更加敏锐,时常担忧某项技术的演变是否在未来保持活力。

最近在各处,比如知乎,csdn 等都看到很多,询问职业生涯规划等的帖子。我的想法和精力应该足够有代表性,至少大部分没有工作过我这么多类型的企业。我的研究生同学毕业后,4个人,3个到现在都没换过工作,只有我换过7个【算上实习就是8个】,他们都是足够专一的人,哈哈。


没有顶会的从业者:成为深度学习老中医

如果你还没有顶会文章,那你目前还不算是top level 的机器学习从业者。当然,即使有了顶级会议很多项目还是非常不好做,不一定能拿的下来。世界是变化的,数据是变化的,几百亿,万亿的参数能拟合时刻变化的现实世界吗?

在这里插入图片描述

在这里插入图片描述

图 如何对付AI系统的错误图片来源:Randall Munroe,XKCD。


AIGC 还未能克服的难点:忽然的惊喜 – 大模型的智能涌现

涌现这个词其实不难理解,尤其是养过小孩的人。

忽然有一天,你的小孩学着妈妈的样子,会了叫你的名字,说:xxx 把水给我!

我想你一定不会生气,反而会非常惊喜。这样的场景很类似智能的涌现。

人类面对从未遇到过的问题就会涌现,但。。。

■纯文本信息还不足以建立完整的世界模型。目前的大模型在文本学习上有突破,图片学习效果还有待验证,而视频学习则可能要引入Transformer模型之外的新技术。
■大模型的泛化能力是有边界的。当前大模型从文本中学到的能力主要集中在自然语言相关的认知智能领域,而在以图像识别为代表的感知智能和以用户行为预测为代表的决策智能领域,大模型则未必适合。即便在认知智能领域,其也存在规划能力不足等一系列缺陷。
■在自然语言相关的认知智能边界内,泛化的产生是被动的。从涌现机制的角度看,只能通过事后观察来分析浅层的规律,无法做到新技能涌现的可知、可预测、可控,也就很难提升新技能涌现的效率。

■基于已有闭源大模型的API接口,通过应用级的微调和打补丁做定制应用。
■选择开源的、已经完成预训练工作的基础模型,做更多定制。
■从头自己训练垂直模型:从预训练数据选择、模型结构设计切入,定制全新大模型,以解决特定行业场景的问题。如彭博推出了500亿参数的金融垂直大模型BloombergGPT,预训练使用的金融数据集和通用数据集各占一半,在金融特有任务,如在新闻情感分析领域领先于通用大模型。


未来还能做点什么,从计算机视觉的发展走向看

我算是搞过机器学习的两大领域,NLP 和CV , 可以说 GPT3.5 出来后, NLP 死了,CV 还能活几天估计也不远了,因为目前还有个开放域的自动驾驶没有能搞特别好的解决。我认为CV 以后的研究和应用热点 会集中在下面两个方面:

  • 自动驾驶
  • 深度学习大模型边缘端的部署及推理优化

OpenCV 5.0 还没问世,更新不过来了给大家发了一封邮件立面写到:

这里面第一句话,我认为非常有深度:
在一个大规模人工智能项目是封闭来源的世界里,少数公司将控制人工智能的未来!

T 字型人才与护城河

从某种意义上说,目前的知识分享领域的博主都是在用 自己个人的力量在对抗人工智能。下面是我制作的两个数字人,我甚至连稿子都是AIGC 写的。

数字人-王大力精讲:《机器学习与深度学习》

数字人-王大力精讲: 视频分析 VideoAnalytics

我还在不断思考,在特定领域中,如何不被 大模型所取代。程序员这个职业还能干几年,领域常说成为T字型人才,这个深度就是护城河,目前来看大模型的深度越来越深。。。

成为更加熟练使用人工智能的人

不过也不用那么担心,不要担心人工智能会取代你。

也许取代你的,不是人工智能,而是比你更会用人工智能的人。


参考文献与学习路径

  • 《大模型时代:ChatGPT开启通用人工智能浪潮》

    OpenCV5 的活动:

  • https://www.indiegogo.com/projects/opencv-5-support-non-profit-open-source-cv-ai#/

举报

相关推荐

0 条评论