0
点赞
收藏
分享

微信扫一扫

聚类算法 sklearn k_means (返回一维数据的最优聚类)

贵州谢高低 2023-01-13 阅读 57


from sklearn.cluster import KMeans
import numpy
import collections
import pandas
from sklearn import metrics

def k_means(pp1,clus):


pv=list(pp1)
if len(set(pv))>clus:
gf=numpy.array([pv]).T
estimator = KMeans(n_clusters=clus)#构造聚类器

estimator.fit(gf)#聚类
label_pred = estimator.labels_ #获取聚类标签

#print(label_pred)
aa=collections.Counter(label_pred)

print('aa=',aa)
v=pandas.Series(aa)
gg=list(v)
index_max=gg.index(max(gg))

print('index_max=',index_max)

centroids = estimator.cluster_centers_ #获取聚类中心

print('centroids=',centroids)
#inertia = estimator.inertia_ # 获取聚类准则的总和
center=centroids[index_max][0]
return ((center))
else:
return (pp1.mean())


def k_means_label(a):


def km_index(k):

pv=list(a)

gf=numpy.array([pv]).T

#from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=k, random_state=9).fit_predict(gf)

index=metrics.silhouette_score(gf, y_pred, metric='euclidean')

print('index',index)

return index
cs=list(range(2,6))

df=list(map(km_index,cs))

df1=pandas.Series(df,index=cs)
df2=df1.sort_values(ascending=False)

df3=list(df2.index)[0]

return df3


a=numpy.random.randint(0,1000,10)

cc=k_means_label(a)

b=k_means(a,cc)

print('b=',b)

index 0.804055967401
index 0.805649685362
index 0.65899543985
index 0.517110170591
aa= Counter({0: 5, 1: 3, 2: 2})
index_max= 0
centroids= [[ 160.8]
[ 610. ]
[ 824.5]]
b= 160.8


举报

相关推荐

0 条评论