0
点赞
收藏
分享

微信扫一扫

分享几个国内免费的ChatGPT镜像网址(亲测有效)

文章目录

1. 前言

生活中几乎处处都会用到排序,比如:网购时的店铺顺序,学生成绩的排名等,今天我们就来学习数据结构中常见的几种排序算法。

2. 排序

2.1 概念

2.2 常见的排序算法

下面我就为大家介绍这些排序算法的特点及如何实现。

3. 常见排序算法的实现

3.1 直接插入排序

代码实现:

void InsertSort(int* a, int n)
{
	int i = 0;
	for (i = 0; i < n - 1; i++)
	{
		//[0,end]有序,把end+1的位置插入,并保持有序
		int end = i;
		int tmp = a[end + 1];
		while (end >= 0)
		{
			if (tmp < a[end])
			{
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

3.2 希尔排序

代码实现:

void ShellSort(int* a, int n)
{
	//gap > 1时是预排序
	//gap 最后一次等于1,是直接插入排序
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		int i = 0;
		for (i = 0; i < n - gap; i++)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (tmp < a[end])
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

3.3 直接选择排序

我们对直接选择排序进行一点优化,让这个算法每次分别选出一个最大的数和一个最小的数,这样可以两边同时进行排序,减少程序执行的时间。
代码实现:

void SelectSort(int* a, int n)
{
	int begin = 0;
	int end = n - 1;
	
	while (begin < end)
	{
		int mini = begin;
		int maxi = begin;
		for (int i = begin; i < end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
		Swap(&a[begin], &a[mini]);
		//如果begin和maxi重叠,那么要修正一下maxi的位置
		if (begin == maxi)
		{
			maxi = mini;
		}
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}
}

3.4 堆排序

代码实现:

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void AdjustUp(int* arr, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (arr[child] > arr[parent])
		{
			Swap(&arr[child], &arr[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void AdjustDown(int* arr, int size, int parent)
{
	int child = parent * 2 + 1;
	while (child < size)
	{
		if (child + 1 < size && arr[child + 1] < arr[child])
		{
			child = child + 1;
		}
		if (arr[child] < arr[parent])
		{
			Swap(&arr[child], &arr[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapSort(int* arr, int size)
{
	//排升序建大堆,排降序建小堆
	//向上调整建堆O(N*logN)
	//int i = 0;
	//for (i = 1; i < size; i++)
	//{
	//	AdjustUp(arr, i);
	//}

	//向下调整建堆O(N)
	int i = 0;
	for (i = (size - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(arr, size, i);
	}

	int end = size - 1;
	while (end > 0)
	{
		Swap(&arr[0], &arr[end]);
		AdjustDown(arr, end, 0);
		end--;
	}
}

3.5 冒泡排序

代码实现:

void BubbleSort(int* a, int n)
{
	for (int j = 0; j < n - 1; j++)
	{
		int flag = 0;
		for (int i = 0; i < n - j; i++)
		{
			if (a[i] > a[i + 1] && i+1 < n)
			{
				Swap(&a[i], &a[i + 1]);
				flag = 1;
			}
		}
		if (flag == 0)
		{
			return;
		}
	}
}

3.6 快速排序

而问题就是如何将一个待排序序列按key分割成两个满足要求的子序列,下面我们来介绍三种最常见的方式。

3.6.1 hoare版本

代码实现:

//hoare版本
int PartSort1(int* a, int left, int right)
{
	int begin = left;
	int end = right;
	int key = left;
	while (left < right)
	{
		//右边先走,找小
		while (left < right && a[right] >= a[key])
		{
			right--;
		}
		//左边再走,找大
		while (left < right && a[left] <= a[key])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[key], &a[left]);
	key = left;
	return key;
}

3.6.2 挖坑法

代码实现:

//挖坑法
int PartSort2(int* a, int left, int right)
{
	int begin = left;
	int end = right;
	int key = a[begin];
	int pit = begin;
	while (left < right)
	{
		//右边先走,找小,填到左边的坑里面去。这个位置形成新的坑
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[pit] = a[right];
		pit = right;
		//左边再走,找大,填到右边的坑里面去。这个位置形成新的坑
		while (left < right && a[left] <= key)
		{
			left++;
		}
		a[pit] = a[left];
		pit = left;
	}
	a[pit] = key;
	return pit;
}

3.6.3 前后指针法

代码实现:

//前后指针法
int PartSort3(int* a, int left, int right)
{
	int key = left;
	int prev = left;
	int cur = left + 1;
	while (cur <= right)
	{
		if (a[cur] < a[key])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[key], &a[prev]);
	key = prev;
	return key;
}

3.6.4 快速排序的优化

3.6.4.1 三数取中法

代码实现:

int GetMid(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	if (a[left] < a[mid])
	{
		if (a[right] > a[mid])
		{
			return mid;
		}
		else if (a[right] < a[left])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else //a[left] >= a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

3.6.4.2 小区间简化法

3.7 快速排序最优版

最终版快速排序代码如下:

//前后指针法
int PartSort3(int* a, int left, int right)
{
	int key = left;
	int prev = left;
	int cur = left + 1;
	//三数取中法优化
	int mid = GetMid(a, left, right);
	Swap(&a[key], &a[mid]);

	while (cur <= right)
	{
		if (a[cur] < a[key])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[key], &a[prev]);
	key = prev;
	return key;
}

void QuickSort(int* a, int left, int right)
{
	//区间不存在,或者只有一个值则不需要在处理
	if (left >= right)
	{
		return;
	}
	
	if (right - left > 10)
	{

		//int key = PartSort1(a, left, right);
		//int key = PartSort2(a, left, right);
		int key = PartSort3(a, left, right);
		QuickSort(a, left, key - 1);
		QuickSort(a, key + 1, right);
	}
	else
	{
		//递归到小区间的时候,用插入排序
		InsertSort(a + left, right - left + 1);
	}
}

3.8 快速排序非递归实现

代码如下:

void QuickSortNonR(int* a, int left, int right)
{
	ST st;
	StackInit(&st);
	StackPush(&st, right);
	StackPush(&st, left);

	while (!StackEmpty(&st))
	{
		int left = StackTop(&st);
		StackPop(&st);

		int right = StackTop(&st);
		StackPop(&st);

		int key = PartSort3(a, left, right);

		if (key + 1 < right)
		{
			StackPush(&st, right);
			StackPush(&st, key + 1);
		}
		if (left < key - 1)
		{
			StackPush(&st, key - 1);
			StackPush(&st, left);
		}
	}
	StackDestroy(&st);
}

3.9 归并排序

代码实现:

void _MergeSort(int* a, int begin, int end, int* tmp)
{
	if (begin >= end)
	{
		return;
	}
	int mid = (begin + end) / 2;
	//[begin, mid] [mid+1, end] 分治递归,让子区间有序
	_MergeSort(a, begin, mid, tmp);
	_MergeSort(a, mid + 1, end, tmp);
	//归并[begin, mid] [mid+1, end]
	int begin1 = begin;
	int end1 = mid;
	int begin2 = mid + 1;
	int end2 = end;
	int i = begin1;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	//把归并数据拷贝回原数组
	memcpy(a + begin, tmp + begin, sizeof(int)*(end - begin + 1));

}


void MergeSort(int* a, int n)
{
	assert(a);
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc");
		exit(-1);
	}

	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
}

3.10 归并排序非递归实现

代码实现:

void MergeSortNonR(int* a, int n)
{
	assert(a);
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc");
		exit(-1);
	}
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i += 2*gap)
		{
			int begin1 = i;
			int end1 = i + gap - 1;
			int begin2 = i + gap;
			int end2 = i + 2 * gap - 1;
			//越界-修正边界
			if (end1 >= n)
			{
				end1 = n - 1;
				//[begin2, end2]修正为不存在区间
				begin2 = n;
				end2 = n - 1;
			}
			else if (begin2 >= n)
			{
				//[begin2, end2]修正为不存在区间
				begin2 = n;
				end2 = n - 1;
			}
			else if (end2 >= n)
			{
				end2 = n - 1;
			}
			
			int j = begin1;
			int m = end2 - begin1 + 1;
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
				{
					tmp[j++] = a[begin1++];
				}
				else
				{
					tmp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
			memcpy(a + i, tmp + i, sizeof(int) * m);
		}
		gap *= 2;
	}
	free(tmp);
}

4. 排序算法复杂度及稳定性分析

排序方法平均情况最好情况最坏情况辅助空间稳定性
直接插入排序O(N^2)O(N)O(N^2)O(1)稳定
希尔排序O(NlogN)~O(N^2)O(N^1.3)O(N^2)O(1)不稳定
直接选择排序O(N^2)O(N^2)O(N^2)O(1)不稳定
堆排序O(NlogN)O(NlogN)O(NlogN)O(1)不稳定
冒泡排序O(N^2)O(N)O(N^2)O(1)稳定
快速排序O(NlogN)O(NlogN)O(N^2)O(logN)~O(N)不稳定
归并排序O(NlogN)O(NlogN)O(NlogN)O(N)稳定

5. 结尾

关于数据结构中常见的排序算法我就给大家介绍到这里了,要想学会排序算法最重要的是掌握每种排序的思想,熟悉每一种算法的特点、复杂度和稳定性,在不同的场景选择最合适的排序算法。文中难免有很多地方出现错误和纰漏,此文仅供大家学习和参考。如果本文对大家学习排序算法有帮助的话,博主感到非常荣幸。
最后,感谢各位大佬的耐心阅读和支持,觉得本篇文章写的不错的朋友可以三连关注支持一波,如果有什么问题或者本文有错误的地方大家可以私信我,也可以在评论区留言讨论,再次感谢各位。

举报

相关推荐

0 条评论