0
点赞
收藏
分享

微信扫一扫

小土堆pytorch教程学习笔记P21

腾讯优测 2022-04-02 阅读 53
pytorch

P21.神经网络-线性层及其他层介绍

Pytorch官网 -> Docs -> Pytorch -> torch.nn -> Linear Layers

 

import torchvision
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
import torch
import torchvision
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    output = torch.reshape(imgs, (1, 1, 1, -1))
    print(output.shape)
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64, drop_last=True)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self,input):
        output = self.linear1(input)
        return output

tudui = Tudui()


for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    # output = torch.reshape(imgs, (1, 1, 1, -1))
    output = torch.flatten(imgs)
    print(output.shape)
    output = tudui(output)
    print(output.shape)
举报

相关推荐

0 条评论