0
点赞
收藏
分享

微信扫一扫

【大数据】Hadoop总结

奔跑的酆 2023-05-07 阅读 109

文章目录

🎨1.算法的复杂度介绍

🎨2.时间复杂度的概念

📝代码样例

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
         int count = 0;
         for (int i = 0; i < N ; ++ i)
         {
               for (int j = 0; j < N ; ++ j)
               {
                      ++count;
               }
          }
 
         for (int k = 0; k < 2 * N ; ++ k)
         {
                      ++count;
         }
         int M = 10;
         while (M--)
         {
                     ++count;
         }
 }

在这里插入图片描述

🎨3.大O的渐进表示法

📝实例1

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

在这里插入图片描述

📝实例2

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

在这里插入图片描述

📝实例3

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

在这里插入图片描述

📝实例4

在这里插入图片描述

📝实例5

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

在这里插入图片描述

📝实例6

// 计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

在这里插入图片描述

📝实例7(⭐两种递归的区别)

1.递归里没有循环

long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

2.递归里有循环

long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	for (size_t i; i < N; ++i)
	{
		//...
	}
	return Fac(N - 1) * N;
}

在这里插入图片描述

🌟误区

📝实例8

// 计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

在这里插入图片描述

🎨4.空间复杂度的概念

📝实例1

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

🌟误区

📝实例2

long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;

	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

📝实例3

long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	return Fac(N - 1) * N;
}

在这里插入图片描述

📝实例4(🎃斐波那契递归Fib的空间复杂度)

long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

在这里插入图片描述

🖊代码证明

void  Func1()
{
	int a = 0;
	printf("%p\n", &a);
}
void  Func2()
{
	int b = 0;
	printf("%p\n", &b);
}
int main()
{
	Func1();
	Func2();
	return  0;
}

在这里插入图片描述
在这里插入图片描述

🌟误区

举报

相关推荐

0 条评论