0
点赞
收藏
分享

微信扫一扫

【Matlab】智能优化算法_海洋捕食者算法MPA

林肯公园_97cc 2023-07-05 阅读 86
matlab算法

【Matlab】智能优化算法_海洋捕食者算法MPA

在这里插入图片描述

1.背景介绍

1.1 布朗运动

在这里插入图片描述

1.2 莱维运动

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.数学模型

2.1 MPA配方

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.2 MPA优化场景

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.3 涡流形成与FAD效应

在这里插入图片描述

3.文件结构

在这里插入图片描述

func_plot.m 					% 绘图函数
Get_Functions_details.m			% 基准的全部信息和实现
initialization.m				% 初始化
levy.m 							% 莱维运动方程
main.m							% 主函数
MPA.m 							% 海洋捕食者算法

4.伪代码

在这里插入图片描述

5.详细代码及注释

5.1 func_plot.m

function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name
    case 'F1'
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2'
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3'
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4'
        x=-100:2:100; y=x; %[-100,100]
    case 'F5'
        x=-200:2:200; y=x; %[-5,5]
    case 'F6'
        x=-100:2:100; y=x; %[-100,100]
    case 'F7'
        x=-1:0.03:1;  y=x  %[-1,1]
    case 'F8'
        x=-500:10:500;y=x; %[-500,500]
    case 'F9'
        x=-5:0.1:5;   y=x; %[-5,5]
    case 'F10'
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11'
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12'
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13'
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14'
        x=-100:2:100; y=x;%[-100,100]
    case 'F15'
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16'
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17'
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18'
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19'
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20'
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F21'
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22'
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F23'
        x=-5:0.1:5; y=x;%[-5,5]
end



L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
    end
end

surfc(x,y,f,'LineStyle','none');
colormap winter

end

5.2 Get_Functions_details.m

function [lb,ub,dim,fobj] = Get_Functions_details(F)


switch F
    case 'F1'
        fobj = @F1;
        lb=-100;
        ub=100;
        dim=50;
        
    case 'F2'
        fobj = @F2;
        lb=-10;
        ub=10;
        dim=50;
        
    case 'F3'
        fobj = @F3;
        lb=-100;
        ub=100;
        dim=50;
        
    case 'F4'
        fobj = @F4;
        lb=-100;
        ub=100;
        dim=50;
        
    case 'F5'
        fobj = @F5;
        lb=-30;
        ub=30;
        dim=50;
        
    case 'F6'
        fobj = @F6;
        lb=-100;
        ub=100;
        dim=50;
        
    case 'F7'
        fobj = @F7;
        lb=-1.28;
        ub=1.28;
        dim=50;
        
    case 'F8'
        fobj = @F8;
        lb=-500;
        ub=500;
        dim=50;
        
    case 'F9'
        fobj = @F9;
        lb=-5.12;
        ub=5.12;
        dim=50;
        
    case 'F10'
        fobj = @F10;
        lb=-32;
        ub=32;
        dim=50;
        
    case 'F11'
        fobj = @F11;
        lb=-600;
        ub=600;
        dim=50;
        
    case 'F12'
        fobj = @F12;
        lb=-50;
        ub=50;
        dim=50;
        
    case 'F13'
        fobj = @F13;
        lb=-50;
        ub=50;
        dim=50;
        
    case 'F14'
        fobj = @F14;
        lb=-65.536;
        ub=65.536;
        dim=2;
        
    case 'F15'
        fobj = @F15;
        lb=-5;
        ub=5;
        dim=4;
        
    case 'F16'
        fobj = @F16;
        lb=-5;
        ub=5;
        dim=2;
        
    case 'F17'
        fobj = @F17;
        lb=[-5,0];
        ub=[10,15];
        dim=2;
        
    case 'F18'
        fobj = @F18;
        lb=-2;
        ub=2;
        dim=2;
        
    case 'F19'
        fobj = @F19;
        lb=0;
        ub=1;
        dim=3;
        
    case 'F20'
        fobj = @F20;
        lb=0;
        ub=1;
        dim=6;
        
    case 'F21'
        fobj = @F21;
        lb=0;
        ub=10;
        dim=4;
        
    case 'F22'
        fobj = @F22;
        lb=0;
        ub=10;
        dim=4;
        
    case 'F23'
        fobj = @F23;
        lb=0;
        ub=10;
        dim=4;
        
end
end

% F1

function o = F1(x)
o=sum(x.^2);
end

% F2

function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end

% F3

function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
    o=o+sum(x(1:i))^2;
end
end

% F4

function o = F4(x)
o=max(abs(x));
end

% F5

function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end

% F6

function o = F6(x)
o=sum(abs((x+.5)).^2);
end

% F7

function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end

% F8

function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end

% F9

function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end

% F10

function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end

% F11

function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end

% F12

function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
    (1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end

% F13

function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
    ((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end

% F14

function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
    -32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25
    bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end

% F15

function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end

% F16

function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end

% F17

function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end

% F18

function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end

% F19

function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F20

function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
    .2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F21

function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:5
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F22

function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:7
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F23

function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:10
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

5.3 initialization.m

function Positions=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % numnber of boundaries

% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end

% If each variable has a different lb and ub
if Boundary_no>1
    for i=1:dim
        ub_i=ub(i);
        lb_i=lb(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end
end

5.4 levy.m

function [z] = levy(n,m,beta)

num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator

den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominator

sigma_u = (num/den)^(1/beta);% Standard deviation

u = random('Normal',0,sigma_u,n,m);

v = random('Normal',0,1,n,m);

z =u./(abs(v).^(1/beta));


end

5.5 main.m

clear all
clc
format long
SearchAgents_no=25; % Number of search agents

Function_name='F23';
   
Max_iteration=500; % Maximum number of iterations

[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,Convergence_curve]=MPA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

% function topology
figure('Position',[500 400 700 290])
subplot(1,2,1);
func_plot(Function_name);
title('Function Topology')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])

% Convergence curve
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');


display(['The best solution obtained by MPA is : ', num2str(Best_pos,10)]);
display(['The best optimal value of the objective function found by MPA is : ', num2str(Best_score,10)]);
disp(sprintf('--------------------------------------'));

5.6 MPA.m

function [Top_predator_fit,Top_predator_pos,Convergence_curve]=MPA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


Top_predator_pos=zeros(1,dim);
Top_predator_fit=inf; 

Convergence_curve=zeros(1,Max_iter);
stepsize=zeros(SearchAgents_no,dim);
fitness=inf(SearchAgents_no,1);


Prey=initialization(SearchAgents_no,dim,ub,lb);
  
Xmin=repmat(ones(1,dim).*lb,SearchAgents_no,1);
Xmax=repmat(ones(1,dim).*ub,SearchAgents_no,1);
         

Iter=0;
FADs=0.2;
P=0.5;

while Iter<Max_iter    
     %------------------- Detecting top predator -----------------    
 for i=1:size(Prey,1)  
        
    Flag4ub=Prey(i,:)>ub;
    Flag4lb=Prey(i,:)<lb;    
    Prey(i,:)=(Prey(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                    
        
    fitness(i,1)=fobj(Prey(i,:));
                     
     if fitness(i,1)<Top_predator_fit 
       Top_predator_fit=fitness(i,1); 
       Top_predator_pos=Prey(i,:);
     end          
 end
     
     %------------------- Marine Memory saving ------------------- 
    
 if Iter==0
   fit_old=fitness;    Prey_old=Prey;
 end
     
  Inx=(fit_old<fitness);
  Indx=repmat(Inx,1,dim);
  Prey=Indx.*Prey_old+~Indx.*Prey;
  fitness=Inx.*fit_old+~Inx.*fitness;
        
  fit_old=fitness;    Prey_old=Prey;

     %------------------------------------------------------------   
     
 Elite=repmat(Top_predator_pos,SearchAgents_no,1);  %(Eq. 10) 
 CF=(1-Iter/Max_iter)^(2*Iter/Max_iter);
                             
 RL=0.05*levy(SearchAgents_no,dim,1.5);   %Levy random number vector
 RB=randn(SearchAgents_no,dim);          %Brownian random number vector
           
  for i=1:size(Prey,1)
     for j=1:size(Prey,2)        
       R=rand();
          %------------------ Phase 1 (Eq.12) ------------------- 
       if Iter<Max_iter/3 
          stepsize(i,j)=RB(i,j)*(Elite(i,j)-RB(i,j)*Prey(i,j));                    
          Prey(i,j)=Prey(i,j)+P*R*stepsize(i,j); 
             
          %--------------- Phase 2 (Eqs. 13 & 14)----------------
       elseif Iter>Max_iter/3 && Iter<2*Max_iter/3 
          
         if i>size(Prey,1)/2
            stepsize(i,j)=RB(i,j)*(RB(i,j)*Elite(i,j)-Prey(i,j));
            Prey(i,j)=Elite(i,j)+P*CF*stepsize(i,j); 
         else
            stepsize(i,j)=RL(i,j)*(Elite(i,j)-RL(i,j)*Prey(i,j));                     
            Prey(i,j)=Prey(i,j)+P*R*stepsize(i,j);  
         end  
         
         %----------------- Phase 3 (Eq. 15)-------------------
       else 
           
           stepsize(i,j)=RL(i,j)*(RL(i,j)*Elite(i,j)-Prey(i,j)); 
           Prey(i,j)=Elite(i,j)+P*CF*stepsize(i,j);  
    
       end  
      end                                         
  end    
        
     %------------------ Detecting top predator ------------------        
  for i=1:size(Prey,1)  
        
    Flag4ub=Prey(i,:)>ub;  
    Flag4lb=Prey(i,:)<lb;  
    Prey(i,:)=(Prey(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
  
    fitness(i,1)=fobj(Prey(i,:));
        
      if fitness(i,1)<Top_predator_fit 
         Top_predator_fit=fitness(i,1);
         Top_predator_pos=Prey(i,:);
      end     
  end
        
     %---------------------- Marine Memory saving ----------------
    
 if Iter==0
    fit_old=fitness;    Prey_old=Prey;
 end
     
    Inx=(fit_old<fitness);
    Indx=repmat(Inx,1,dim);
    Prey=Indx.*Prey_old+~Indx.*Prey;
    fitness=Inx.*fit_old+~Inx.*fitness;
        
    fit_old=fitness;    Prey_old=Prey;

     %---------- Eddy formation and FADs� effect (Eq 16) ----------- 
                             
  if rand()<FADs
     U=rand(SearchAgents_no,dim)<FADs;                                                                                              
     Prey=Prey+CF*((Xmin+rand(SearchAgents_no,dim).*(Xmax-Xmin)).*U);

  else
     r=rand();  Rs=size(Prey,1);
     stepsize=(FADs*(1-r)+r)*(Prey(randperm(Rs),:)-Prey(randperm(Rs),:));
     Prey=Prey+stepsize;
  end
                                                        
  Iter=Iter+1;  
  Convergence_curve(Iter)=Top_predator_fit; 
       
end

6.运行结果

在这里插入图片描述

7.参考文献

举报

相关推荐

matlab多种智能优化算法

0 条评论