0
点赞
收藏
分享

微信扫一扫

基于matlab实现给定非平稳信号的短时平稳持续时间

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

⛄ 内容介绍

In the paper, a novel estimation method is proposed, concerning the wide-sense stationarity testof the signals. Background information is given about the concept of stationarity of the processes and signals. The problem of the signal stationarity estimation is a ddressed along with criticism of the availablestationarity  tests.  Further,  a  new  wide-sense  stationarity  estimation  method  is  described,  involving estimation of the mean-, variance- and autocovariance- stationarity of a signal. Finally, a few representative signals  are  tested  and  the  results  clearly  indicate  the  consistence  of  the  proposed  test  method.  

基于matlab实现给定非平稳信号的短时平稳持续时间_无人机

⛄ 部分代码

clear, clc, close all

%% generate test signal
% sampling frequency
fs = 44100;

% TS1A 
t1 = 0:1/fs:1;
x1 = 1.0*sin(2*pi*1000*t1);

% TS2A
ta = 0:1/fs:0.2;
tb = 0:1/fs:0.8;
xa = 1.0*sin(2*pi*1000*ta);
xb = 2.0*sin(2*pi*1000*tb);
x2 = [xa xb];

% TS3A
tc = 0:1/fs:0.2;
td = 0:1/fs:0.8;
xc = 1.0*sin(2*pi*1000*tc);
xd = 1.0*sin(2*pi*2000*td);
x3 = [xc xd];

% TS4A
t4 = 0:1/fs:1;
x4 = chirp(t4, 1000, t4(end), 10000);

%% statiogram computation
% set the frame durations to check about stationarity
fr_dur = [5 10 20 30 40 50 100 200 300 400 500]*1e-3;
fr_len = round(fr_dur*fs);

% set the confidence level 
gamma = 0.5;

% plot the signal statiogram
figure(1)
subplot(2, 2, 1)
statiogram(x1, fr_len, gamma)
xlabel('Frame duration, ms')
ylabel([])
xticklabels(num2str(fr_dur'*1000)) 
yticklabels({'Mean', 'Var', 'AutoCoVar'})
title('Statiogram for TS1A')

subplot(2, 2, 2)
statiogram(x2, fr_len, gamma)
xlabel('Frame duration, ms')
ylabel([])
xticklabels(num2str(fr_dur'*1000))
yticklabels({'Mean', 'Var', 'AutoCoVar'})
title('Statiogram for TS2A')

subplot(2, 2, 3)
statiogram(x3, fr_len, gamma)
xlabel('Frame duration, ms')
ylabel([])
xticklabels(num2str(fr_dur'*1000)) 
yticklabels({'Mean', 'Var', 'AutoCoVar'})
title('Statiogram for TS3A')

subplot(2, 2, 4)
statiogram(x4, fr_len, gamma)
xlabel('Frame duration, ms')
ylabel([])
xticklabels(num2str(fr_dur'*1000)) 
yticklabels({'Mean', 'Var', 'AutoCoVar'})
title('Statiogram for TS4A')

⛄ 运行结果

基于matlab实现给定非平稳信号的短时平稳持续时间_无人机_02

基于matlab实现给定非平稳信号的短时平稳持续时间_路径规划_03

⛄ 参考文献

[1] H. Zhivomirov, I. Nedelchev. A Method for Signal Stationarity Estimation. Romanian Journal of Acoustics and Vibration, ISSN: 1584-7284, Vol. XVII, No. 2, pp. 149-155, 2020. (http://rjav.sra.ro/index.php/rjav/article/view/178/103).

[2] --- A research article dedicated to this estimation technique is about to come by the end of 2023. ---

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长



举报

相关推荐

0 条评论