Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22076 Accepted Submission(s): 7405
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
Hint
//题意:
给你一个m,n,然后给你n个数,表示让你从n个数中找出m个连续的数组使得他们的和最大。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define INF 0x80000000
using namespace std;
int a[1000010];
int b[1000010];
int dp[1000010];
int main()
{
int n,m,i,j,k;
int mm;
while(scanf("%d%d",&m,&n)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=0;i<=n;i++)
{
dp[i]=0;
b[i]=0;
}
for(i=1;i<=m;i++)
{
mm=INF;
for(j=i;j<=n;j++)
{
if(dp[j-1]>b[j-1])
dp[j]=dp[j-1]+a[j];
else
dp[j]=b[j-1]+a[j];
b[j-1]=mm;
if(mm<dp[j])
mm=dp[j];
}
b[j-1]=mm;
}
printf("%d\n",mm);
}
return 0;
}