0
点赞
收藏
分享

微信扫一扫

【每日SQL打卡】​​​​​​​​​​​​​​​DAY 20丨查询球队积分【难度中等】​


 【未来的你,会感谢今天努力的你】每日两题,一难一易,每天进步一点点,可能会直接导致一场面试的成功,或工作的轻松搞定,从而升职加薪迎娶白富美,加油小伙伴! 🍅举办场地:数据仓库交流群
🍅加入打卡:https://app.yinxiang.com/fx/13ce6bbd-f36f-4e92-be53-92dd381ed729

难度中等

SQL架构

Table: ​​Teams​

+---------------+----------+
| Column Name | Type |
+---------------+----------+
| team_id | int |
| team_name | varchar |
+---------------+----------+
此表的主键是 team_id,表中的每一行都代表一支独立足球队。

Table: ​​Matches​

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| match_id | int |
| host_team | int |
| guest_team | int |
| host_goals | int |
| guest_goals | int |
+---------------+---------+
此表的主键是 match_id,表中的每一行都代表一场已结束的比赛,比赛的主客队分别由它们自己的 id 表示,他们的进球由 host_goals 和 guest_goals 分别表示。

积分规则如下:

  • 赢一场得三分;
  • 平一场得一分;
  • 输一场不得分。

写出一条SQL语句以查询每个队的 team_idteam_name 和 num_points。结果根据 num_points 降序排序,如果有两队积分相同,那么这两队按 team_id 升序排序

查询结果格式如下:

Teams table:
+-----------+--------------+
| team_id | team_name |
+-----------+--------------+
| 10 | Leetcode FC |
| 20 | NewYork FC |
| 30 | Atlanta FC |
| 40 | Chicago FC |
| 50 | Toronto FC |
+-----------+--------------+

Matches table:
+------------+--------------+---------------+-------------+--------------+
| match_id | host_team | guest_team | host_goals | guest_goals |
+------------+--------------+---------------+-------------+--------------+
| 1 | 10 | 20 | 3 | 0 |
| 2 | 30 | 10 | 2 | 2 |
| 3 | 10 | 50 | 5 | 1 |
| 4 | 20 | 30 | 1 | 0 |
| 5 | 50 | 30 | 1 | 0 |
+------------+--------------+---------------+-------------+--------------+

Result table:
+------------+--------------+---------------+
| team_id | team_name | num_points |
+------------+--------------+---------------+
| 10 | Leetcode FC | 7 |
| 20 | NewYork FC | 3 |
| 50 | Toronto FC | 3 |
| 30 | Atlanta FC | 1 |
| 40 | Chicago FC | 0 |
+------------+--------------+---------------+

已经有思路?开始打卡吧!

  右上角【发帖】

添加文末公众号「信息技术智库」:

🍅 硬核资料:领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、前端等。

👇👇技术交流、非诚勿👇👇

举报

相关推荐

0 条评论