name: rllab
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- _sysroot_linux-64_curr_repodata_hack=3=haa98f57_10
- _tflow_select=2.1.0=gpu
- absl-py=1.3.0=py37h06a4308_0
- astor=0.8.1=py37h06a4308_0
- binutils_impl_linux-64=2.38=h2a08ee3_1
- binutils_linux-64=2.38.0=hc2dff05_0
- blas=1.0=mkl
- c-ares=1.19.0=h5eee18b_0
- ca-certificates=2023.01.10=h06a4308_0
- certifi=2022.12.7=py37h06a4308_0
- cffi=1.15.1=py37h5eee18b_3
- chainer=7.8.0=pyhd3eb1b0_0
- cudatoolkit=9.0=h13b8566_0
- cudnn=7.6.5=cuda9.0_0
- cupti=9.0.176=0
- cycler=0.11.0=pyhd3eb1b0_0
- dbus=1.13.18=hb2f20db_0
- expat=2.4.9=h6a678d5_0
- flit-core=3.6.0=pyhd3eb1b0_0
- fontconfig=2.14.1=h4c34cd2_2
- freetype=2.12.1=h4a9f257_0
- gast=0.5.3=pyhd3eb1b0_0
- gcc_impl_linux-64=11.2.0=h1234567_1
- gcc_linux-64=11.2.0=h5c386dc_0
- giflib=5.2.1=h5eee18b_3
- glib=2.69.1=he621ea3_2
- google-pasta=0.2.0=pyhd3eb1b0_0
- grpcio=1.42.0=py37hce63b2e_0
- gst-plugins-base=1.14.1=h6a678d5_1
- gstreamer=1.14.1=h5eee18b_1
- gxx_impl_linux-64=11.2.0=h1234567_1
- gxx_linux-64=11.2.0=hc2dff05_0
- h5py=2.10.0=py37hd6299e0_1
- hdf5=1.10.6=hb1b8bf9_0
- icu=58.2=he6710b0_3
- importlib-metadata=4.11.3=py37h06a4308_0
- intel-openmp=2023.1.0=hdb19cb5_46305
- joblib=1.1.1=py37h06a4308_0
- jpeg=9e=h5eee18b_1
- keras-applications=1.0.8=py_1
- keras-preprocessing=1.1.2=pyhd3eb1b0_0
- kernel-headers_linux-64=3.10.0=h57e8cba_10
- kiwisolver=1.3.2=py37h295c915_0
- krb5=1.19.4=h568e23c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libclang=14.0.6=default_hc6dbbc7_1
- libclang13=14.0.6=default_he11475f_1
- libdeflate=1.17=h5eee18b_0
- libedit=3.1.20221030=h5eee18b_0
- libevent=2.1.12=h8f2d780_0
- libffi=3.4.4=h6a678d5_0
- libgcc-devel_linux-64=11.2.0=h1234567_1
- libgcc-ng=11.2.0=h1234567_1
- libgfortran-ng=7.5.0=ha8ba4b0_17
- libgfortran4=7.5.0=ha8ba4b0_17
- libgomp=11.2.0=h1234567_1
- libgpuarray=0.7.6=h7f8727e_1
- libllvm14=14.0.6=hdb19cb5_3
- libpng=1.6.39=h5eee18b_0
- libpq=12.9=h16c4e8d_3
- libprotobuf=3.20.3=he621ea3_0
- libstdcxx-devel_linux-64=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libtiff=4.5.0=h6a678d5_2
- libuuid=1.41.5=h5eee18b_0
- libwebp=1.2.4=h11a3e52_1
- libwebp-base=1.2.4=h5eee18b_1
- libxcb=1.15=h7f8727e_0
- libxkbcommon=1.0.1=h5eee18b_1
- libxml2=2.10.3=hcbfbd50_0
- libxslt=1.1.37=h2085143_0
- lz4-c=1.9.4=h6a678d5_0
- mako=1.2.3=py37h06a4308_0
- markdown=3.4.1=py37h06a4308_0
- markupsafe=2.1.1=py37h7f8727e_0
- matplotlib=3.3.2=h06a4308_0
- matplotlib-base=3.3.2=py37h817c723_0
- mkl=2018.0.3=1
- mkl-service=1.1.2=py37h90e4bf4_5
- mkl_fft=1.0.6=py37h7dd41cf_0
- mkl_random=1.0.1=py37h4414c95_1
- mpi=1.0=mpich
- mpi4py=3.1.4=py37hfc96bbd_0
- mpich=3.3.2=hc856adb_0
- nccl=1.3.5=cuda9.0_0
- ncurses=6.4=h6a678d5_0
- ninja=1.10.2=h06a4308_5
- ninja-base=1.10.2=hd09550d_5
- nspr=4.35=h6a678d5_0
- nss=3.89.1=h6a678d5_0
- numpy=1.15.4=py37h1d66e8a_0
- numpy-base=1.15.4=py37h81de0dd_0
- openssl=1.1.1t=h7f8727e_0
- packaging=22.0=py37h06a4308_0
- pandas=1.1.5=py37h2531618_0
- path=16.2.0=pyhd3eb1b0_0
- path.py=12.5.0=hd3eb1b0_0
- pcre=8.45=h295c915_0
- pillow=9.4.0=py37h6a678d5_0
- pip=22.3.1=py37h06a4308_0
- ply=3.11=py37_0
- pycparser=2.21=pyhd3eb1b0_0
- pygpu=0.7.6=py37heb32a55_0
- pyparsing=3.0.9=py37h06a4308_0
- pyqt=5.15.7=py37h6a678d5_1
- pyqt5-sip=12.11.0=py37h6a678d5_1
- python=3.7.16=h7a1cb2a_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- pytorch=0.4.1=py37ha74772b_0
- pytz=2022.7=py37h06a4308_0
- qt-main=5.15.2=h8373d8f_8
- qt-webengine=5.15.9=hbbf29b9_6
- qtwebkit=5.212=h3fafdc1_5
- readline=8.2=h5eee18b_0
- scikit-learn=0.23.2=py37h0573a6f_0
- scipy=1.1.0=py37hfa4b5c9_1
- setuptools=65.6.3=py37h06a4308_0
- sip=6.6.2=py37h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h5eee18b_0
- sysroot_linux-64=2.17=h57e8cba_10
- tbb=2021.8.0=hdb19cb5_0
- tbb4py=2021.7.0=py37hdb19cb5_0
- tensorboard=1.14.0=py37hf484d3e_0
- tensorflow=1.14.0=gpu_py37hae64822_0
- tensorflow-base=1.14.0=gpu_py37h8f37b9b_0
- tensorflow-estimator=1.14.0=py_0
- tensorflow-gpu=1.14.0=h0d30ee6_0
- termcolor=2.1.0=py37h06a4308_0
- theano=1.0.2=py37h6bb024c_0
- threadpoolctl=2.2.0=pyh0d69192_0
- tk=8.6.12=h1ccaba5_0
- toml=0.10.2=pyhd3eb1b0_0
- torchvision=0.2.1=py37_0
- tornado=6.2=py37h5eee18b_0
- typing_extensions=4.4.0=py37h06a4308_0
- werkzeug=2.2.2=py37h06a4308_0
- wheel=0.38.4=py37h06a4308_0
- wrapt=1.14.1=py37h5eee18b_0
- xz=5.4.2=h5eee18b_0
- zipp=3.11.0=py37h06a4308_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- box2d==2.3.10
- cached-property==1.5.2
- charset-normalizer==3.1.0
- cloudpickle==2.2.1
- filelock==3.12.0
- gym==0.7.4
- idna==3.4
- lasagne==0.1
- mujoco-py==0.5.7
- nose==1.3.7
- plotly==5.14.1
- protobuf==4.23.2
- pygame==2.4.0
- pyglet==1.3.0
- pyopengl==3.1.7
- pyprind==2.11.3
- requests==2.31.0
- tenacity==8.2.2
- urllib3==2.0.2
prefix: /home/devil/anaconda3/envs/rllab
rllab运行环境是Reinforcement Learning的经典运行环境,虽然现在已经放弃维护了,但是也很有借鉴价值,曾经多次尝试配置该环境,但是由于该环境的依赖环境大都过期无法安装,因此如何在各个依赖环境的高阶版本中寻找出一个可以运行的版本搭配环境仿佛成了一个NP难题,最后还是经过各种手动调试版本参数才实现成功安装,这里给出具体的anaconda下的依赖环境版本。
源代码地址:
https://gitee.com/devilmaycry812839668/rllab
==========================================================