0
点赞
收藏
分享

微信扫一扫

HDU/HDOJ 2067 小兔的棋盘 DP/卡特兰数

梦幻之云 2023-02-07 阅读 30


HDU/HDOJ 2067 小兔的棋盘

小兔的棋盘

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12782    Accepted Submission(s): 6392

 

Problem Description

小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!

 

 

Input

每次输入一个数n(1<=n<=35),当n等于-1时结束输入。

 

 

Output

对于每个输入数据输出路径数,具体格式看Sample。

 

 

Sample Input

1

3

12

-1

 

 

Sample Output

1 1 2

2 3 10

3 12 416024

 

 

Author

Rabbit

 

 

Source

​​RPG专场练习赛 ​​

 

 

Recommend

Lcy

算法分析:

简单DP,打表做就行,打一半就ok。

递归方程:dp[i][j]=dp[i-1][j]+dp[i][j-1]

初始化:dp[1~40][0]=1

卡特兰数也能实现

代码实现:

#include<cstdio>  
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
using namespace std;
typedef long long ll;
int n; ll dp[41][41];
int DP() //只需要计算下半三角形
{

for(int i=0;i<=40;i++)
dp[i][0]=1;
for(int i=1;i<=40;i++)
for(int j=1;j<=i;j++)
{
//cout<<i<<" "<<j<<" "<<dp[i][j]<<endl;
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
int main()
{
int t=0;
DP();
/*for(int i=0;i<=10;i++)
{for(int j=0;j<=10;j++)
{
cout<<dp[i][j]<<" ";
}
cout<<endl;
}
*/
while(scanf("%d",&n)!=EOF)
{
if(n==-1) break;
t++;
printf("%d %d %lld",t,n,2*dp[n][n]);
cout<<endl;
}
return 0;
}

#include<cstdio>  
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
using namespace std;
typedef long long ll;
int main()
{
ll Catalan[40] = {0};
Catalan[0] = 1;
Catalan[1] = 1;
for (int i = 2 ; i <= 35 ; i++)
for (int j = 0 ; j <= i - 1 ; j++)
Catalan[i] += Catalan[j] * Catalan[i - 1 - j];
int num = 1;
int n;
while (~scanf ("%d",&n) && n != -1)
printf ("%d %d %lld\n",num++,n,Catalan[n] * 2);
return 0;
}

 

举报

相关推荐

0 条评论